Archivo de la categoría ‘Geología en la vida cotidiana’

El terremoto en Salta. 17 de octubre 2015.

Imagen1sismo en Salta.¿Cuándo y dónde tuvo lugar el evento?

El movimiento telúrico se produjo el 17 de Octubre de 2015 a las 08h 33m 10s, hora local, que corresponde a las 11h 33m 10s del meridiano de Greenwich.

El epicentro se calculó a 123 km al SE de Salta, 163 km al NE de San Miguel De Tucumán y 51 km al E de Metán, siendo la localidad más afectada por su cercanía, la de El Galpón.

¿Cuál es la posición del hipocentro?

El hipocentro responde a las coordenadas geográficas 25.51° de latitud oeste y 64.46° de longitud sur, que como ya mencioné, definen un sitio muy próximo a El Galpón, pero a una profundidad cercana a los 10 km.

¿Qué características tuvo, y qué efectos?

Alcanzó una magnitud según la escala Richter de 5,9 grados, y una intensidad en el epicentro de entre V y VI en la escala Mercali Modificada.

Se produjeron numerosos derrumbes, se perdió la conexión eléctrica y se debe lamentar la muerte de al menos una persona. Las vibraciones se sintieron claramente en las ciudades de Salta, San Miguel de Tucumán y San Salvador de Jujuy, y bastante más atenuadas en Santiago del Estero y hasta algunos sitios de la provincia de Córdoba.

Los daños informados tienen que ver fundamentalmente con la vulnerabilidad, ya que no puede considerarse que la magnitud sea demasiado elevada. Así es que si se comparan los daños con los provocados por otro sismo reciente, pero que liberó muchísima más energía, como es el de Illapel, la única justificación de la destrucción registrada hoy, reside en la relativa precariedad de las construcciones, y la falta de previsiones en la urbanización, que claramente no es sismorresistente.

¿Por qué ocurrió ahora?

De alguna manera se relaciona con las secuelas del sismo de Illapel, que como en su momento les adelanté en el correspondiente post, implicaría un reacomodamiento lento de las placas desplazadas en ese evento.

En efecto, son esas mismas placas (Nazca y Sudamericana) las que todavía están buscando una nueva posición de equilibrio, a través de pequeños pulsos que generan terremotos, afortunadamente mucho menos bruscos que el inicial de Illapel.

En este caso, el segmento que se ha movido está más al norte que el del evento original, por lo cual su configuración es diferente. Esta porción de la placa de Nazca subduce con un ángulo bastante mayor que la parte que se movió anteriormente, llegando a valores como 25°, lo que define muchas de las diferencias que se han registrado entre ambos sismos.

Esta manera más abrupta de descender la placa provoca principalmente las siguientes particularidades:

  • el hipocentro es mucho más profundo (10 km en este caso contra los 5 del sismo de Illapel). Esto implica una mayor absorción de la energía durante el camino ascendente de las ondas, lo cual significa algún grado de «amortiguación». En otras palabras, además de haberse liberado menos energía, ésta llega a la superficie bastante más atenuada.
  • las zonas afectadas no se extienden tanto hacia el oeste, porque la placa se aleja de la superficie en mucha menos distancia que en el terremoto chileno. Es por eso- además del hecho de que hubo menos energía involucrada- que el movimiento no fue percibido más allá de la zona central de Argentina. Recuerden que en el caso de Illapel se sintió hasta la costa atlántica, simplemente porque esa porción más meridional de la placa de Nazca se interna casi horizontalmente debajo de la Sudamericana.

¿Qué cabe esperar?

Lo mismo que señalé en el caso de Illapel: más movimientos del rompecabezas, hasta alcanzar el equilibrio en las nuevas posiciones, y también afectación de las placas aledañas, y de las mismas placas, en los extremos más alejados.

Así por ejemplo, yo observaría atentamente toda la costa pacífica de América del Sur, sobre todo a lo largo de Chile y hasta Perú.

Por el otro extremo, observaría los sistemas andinos y subandinos y hasta las Sierras Pampeanas.

En las zonas próximas al evento de Salta, se debe prestar atención a los movimientos de remoción en masa y a los posibles flujos volcánicos en las zonas proclives a ellos.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de este sitio.

¿Qué pasó con el submarino en el Valle de la Luna, San Juan?

submarino antesLa imagen de portada de Locos por la Geología ha pasado a ser una reliquia del pasado, porque el submarino que allí se ve, ha pasado a la historia, y no es ya más que un recuerdo.

¿Qué pasó con el submarino del Valle de la Luna?

Durante el fin de semana pasado, sopló un viento muy intenso en el Parque Provincial Ischigualasto – también conocido como valle de la Luna- en la provincia de San Juan.

De resultas de ese viento, la formación erosiva conocida como El Submarino, perdió una de las torretas a las que debía el nombre y que era una de las atracciones preferidas y emblemáticas de ese paseo turístico.

La columna de piedra hoy desmoronada, era una estructura de entre 40 y 50 metros de altura, que se pensaba a priori que era la menos frágil, pues era también la de mayor volumen total. El estado actual de la escultura eólica es el que puede verse en la figura 1.

Imagen1submarinohoy

Figura 1: el submarino actualmente

¿Por qué sucedió esto?

Se trata de una parte absolutamente normal del ciclo de las esculturas eólicas, que se consideran efímeras en la historia geológica de cualquier lugar.

Efectivamente, las esculturas talladas dominantemente, aunque no de forma exclusiva, por el viento, tienen la particularidad de presentar sus máximos desgastes en las zonas próximas a la base, por la sencilla razón de que es precisamente a ras del suelo donde el viento presenta mayor cantidad de partículas en tránsito; y son esas mismas partículas las que ejercen su acción de corrasión, es decir de «limado» de las estructuras que se interponen en su paso.

Por esa razón – y otras asociadas- son tan comunes las formas de hongos, pirámides invertidas, etc., todas las cuales tienen una base de sustentación muy escasa, siempre sujeta a erosión en progreso, y consecuentemente, resultan formas condenadas a una presencia relativamente breve en el paisaje.

Por cierto que este tema lo comentaré con mucho más detalle cuando haga un post sobre todos los mecanismos de erosión superficial que existen. Para explicar la noticia que nos ocupa, lo dicho alcanza por el momento.

¿Ha pasado antes algo semejante?

Por supuesto, por lo que acabo de explicarles, es lo que pasa siempre, a la larga o a la corta en estos ambientes tan inestables y de tan rápida evolución.

En el mismo parque, ya han desaparecido otras esculturas que se conocían como El Loro y la Lámpara de Aladino, y es un hito histórico la caída de la famosa Piedra Movediza de Tandil, de la que en algún momento haré un post. También en otros parques, como el Arches de Estados Unidos ha habido derrumbes recientes.

¿Volverá a pasar?

No sé si mis alumnos lo recordarán, pero cuando los he llevado a ver éstas y otras formas semejantes, siempre les decía: «Disfruten el paisaje de hoy porque mañana será otro».

Y pasará en algún momento, no sólo con las pocas esculturas remanentes de esta zona, sino probablemente también con las de Los Terrones y otras muchas que hoy están en equilibrio metaestable.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente, porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen de la figura 1 la he tomado de este sitio.

¿Cuántos y cuáles son los movimientos de la Tierra como planeta? Parte 2.

Este post es continuación del de la semana pasada, de modo que deberían empezar por leerlo antes de internarse en el de hoy.

La semana pasada las preguntas que nos planteamos fueron:

¿Cuáles son los movimientos de nuestro planeta?

¿Qué es la traslación y qué efectos tiene?

¿Qué es la rotación y qué efectos tiene?

Hoy retomamos el tema desde ese punto y la primera pregunta es:

¿Qué es precesión y qué efectos tiene?

Ya hemos visto la semana pasada que la Tierra gira alrededor de su eje. Si fuera una esfera perfecta, homogénea, rígida y aislada en el espacio, podría girar eternamente en torno a un eje que a su vez, se mantendría en una misma posición determinada por la misma rotación. Ya que ninguna de las condiciones enumeradas se cumple, el planeta se balancea.

Principalmente debido a que la Tierra no es una esfera perfecta, sino que tiene un ensanchamiento ecuatorial, la atracción gravitacional del Sol y de la Luna, se acentúa en esa zona, con lo que el eje de la Tierra se mueve describiendo un «cabeceo» parecido al de un trompo, y cuya trayectoria podría representarse como si se tratara de dos conos unidos por el vértice.

Los correspondientes círculos que así describe el eje, se cierran en un ciclo de aproximadamente 26.000 años, y a ese efecto se le llama precesión de los equinoccios, ya que implica que los equinoccios se atrasan o adelantan continuamente, ocurriendo a la misma hora y día sólo cada 26.000 años.

Este movimiento tiene importantes consecuencias sobre el clima terrestre, ya que suma o resta su efecto al que la forma elíptica de la órbita terreste, con el sol en uno de los focos provoca, fundamentalmente en las temperaturas planetarias.

En efecto, ya dije la semana pasada que a veces la Tierra está más cerca del Sol y a veces más lejos (perihelio y afelio respectivamente), y además, por la inclinación del eje, en un hemisferio es verano y en el otro invierno (esto ya tiene un post muy detallado que deberían leer).

Agreguemos ahora que si cuando en un hemisferio dado, el perihelio coincide con la posición del eje en que la precesión lo acerca al Sol, los veranos serán más cálidos que cuando en el perihelio, la precesión lo aleja de él.

Inversamente, si en el afelio, el hemisferio donde reina el invierno se ha inclinado apartándose del astro, el invierno es más crudo que si el planeta cabecea acercándolo.

En resumen, los inviernos progresivamente más fríos o más cálidos no son sino el resultado natural y esperable de los movimientos planetarios, de modo que a) no debemos atribuirlos a la actividad humana, y b) no deben causarnos asombro ni justifican teorías apocalípticas. Sólo se trata de condiciones que cambian progresivamente, y sólo son casi idénticas en lapsos de miles de años. (Y eso si no ocurren otras cosas que iremos develando de a poco en el blog).

¿Qué es la nutación y qué efectos tiene?

La nutación se produce porque, por las razones expresadas más arriba, el círculo recorrido por el eje en la precesión tampoco es perfecto, sino que se mueve aproximadamente como ven en el dibujo, en una forma ondulatoria, que se debe principalmente a la relación de la Tierra con su satélite.

Efectivamente, la atracción de la Luna cambia ligeramente con el tiempo, ya que unas veces está más cerca de nuestro planeta que otras, debido a que ambos cuerpos recorren órbitas elípticas y no circulares.

La pequeña onda, que se suma a la precesión y se repite cada diecinueve años, aproximadamente, fue descubierta en 1748 por James Bradley, quien la denominó nutación, que es la palabra latina correspondiente a «balanceo» o cabeceo.

¿Qué es el período de Chandler y qué efectos tiene?

En 1892, Seth Chandler descubrió otro movimiento más o menos circular de los polos, definido, obviamente por algún cambio en la inclinación del eje.

Este período consiste en pequeños desplazamientos, que completan un ciclo en alrededor de 430 días, cerrando un círculo que no es tampoco perfecto.

La causa de este corrimiento se explica por los movimientos de masa en la propia Tierra, que desbalancean la posición de equilibrio del eje. En este período de Chandler, las desviaciones del polo respecto del centro teórico no superan los 9 metros.

Los que tienen algunos años y jugaron con trompos en su infancia, recordarán que si esos juguetes manifestaban alguna tendencia no deseada a inclinarse en alguna dirección, para corregirla, le pegábamos masilla en lugares bien seleccionados. Si cambiábamos de lugar esos lastres agregados, el cabeceo cambiaba. Algo semejante ocurre cuando las masas corticales se desplazan por la superficie del planeta, ya sea a favor de la Tectónica de placas, o de manera abrupta a veces, de resultas de un sismo importante.

¿Qué es el cuarto balanceo y qué efectos tiene?

Al avanzar las técnicas de medición, con métodos cada vez más sofisticados, pueden detectarse cambios de posición planetaria de hasta cinco centímetros. En razón de estas nuevas investigaciones, se ha dado a conocer un cuarto balanceo que completa su ciclo en tiempos que van de dos semanas a dos meses. La medida de máximo diámetro de este círculo es de sesenta centímetros, y su ocurrencia se atribuye a las movilizaciones de masas fluidas, como corrientes atmosféricas, volúmenes de agua o hielo, vientos, etc. sobre el planeta.

Puede llamar la atención que siendo el sexto movimiento descrito, se lo numere como «cuarto», pero ello es porque los dos primeros (traslación y rotación) no son asignables a balanceos.

¿Qué procesos geológicos pueden modificar estos movimientos?

Como señalé más arriba, movimientos sísmicos de gran intensidad pueden modificar el período de Chandler, lo que suele mencionarse como que «provocaron el corrimiento del eje de la Tierra».

Importantes huracanes afectan también al cuarto balanceo.

Y cabe consignar que ya que todos los movimentos responden a sistemas dinámicos regidos por la gravitación universal, cada modificación de uno de ellos, altera- a veces imperceptiblemente y a veces de manera muy notable- a todos los demás.

¿Por qué es tan importante conocerlos a todos?

Porque es en gran medida el conjunto de esas interacciones quien regula los cambios climáticos que acontecen en el planeta, y de los que ahora podremos empezar a informarnos mejor en futuros posts. Vale aclarar que además de estos procesos, hay muchos otros inputs para la regulación climática planetaria. Y ya verán que todo el tema es apasionante.

Bibliografía:

Argüello, Graciela L. 2006. » La Tierra como planeta integrante del Sistema Solar» Cuadernillo didáctico Nº II, Capítulo 1. Para circulación interna en la U.N.R.C. 17 páginas.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es tomada de este sitio.

El terremoto de Nepal.

Imagen1nepalCuando apenas termino de preparar un post fuera de programa, relacionado con la erupción de Calbuco, la naturaleza se encabrita en otro lado, y tengo que salir a hablarles del terremoto en Nepal.

Lo primero que quiero aclarar es que las generalidades y nociones básicas sobre sismología ya han sido explicadas en varios posts de este blog, y pueden ir a leerlas en la etiqueta Sismos. Hoy voy a señalar algunas características particulares de la zona afectada en este mismo momento, y trataré de que comprendan la dinámica actualmente en curso.

¿Dónde, cuándo y cómo se produjo el evento?

Según la información procedente del Servicio Geológico de EE.UU. (USGS, por sus siglas en inglés), el sismo se registró el sábado 25 de abril a las 06:11 GMT, con epicentro 81 kilómetros al noroeste de la capital de Nepal, es decir de Katmandú, y a una profundidad de 15 kilómetros, lo cual es bastante somero.

El nombre oficial de Nepal es República Federal Democrática de Nepal, lo cual en el idioma nepalí es tan complicado como: सङ्घीय लोकतान्त्रिक गणतन्त्र नेपाल, lo que se leería Sanghiya Loktäntrik Ganatantra Nepäl o algo por el estilo.

Se encuentra emplazado en el sur de Asia, en plena cadena del Himalaya, la más alta del mundo, y precisamente por eso, forman parte de su territorio, tanto el monte Everest (8848 msnm), como otros siete de los montes llamados ochomiles por superar ese límite de 8000 metros.

Katmandú es su capital, y se ha erigido en destino turístico para quienes buscan una nueva forma de espiritualidad. Por esta razón coexisten allí hoteles de cinco estrellas, monumentos históricos y viviendas sumamente precarias.

¿Por qué resultó tan luctuoso?

Cada vez que hablamos de estas catástrofes, les recuerdo conceptos sobre los que ya me he explayado, relativos al riesgo geológico.

En este caso, los dos elementos que definieron tanto daño emergente fueron principalmente la susceptibilidad y la vulnerabilidad de la región afectada.

La susceptibilidad, que se refiere a las condiciones geológicas, fue en este caso un elemento que magnificó los daños, puesto que el terreno es abrupto, y por ende su equilibrio es metaeestable, vale decir que con energía relativamente escasa, pierde esa condición y se moviliza a favor de la gravedad, generándose avalanchas, deslizamientos, hundimientos, y remoción en masa en general.

Esto significa que aun cuando no se sigan produciendo réplicas (que para colmo sí han seguido ocurriendo), el terreno está tan precariamente balanceado que se mueve hacia abajo ante cualquier estímulo local.

La vulnerabilidad a su vez, está relacionada con las condiciones de ocupación del territorio, y con las características de las construcciones. Gran parte de las estructuras que se desplomaron eran relativamente precarias, y las que no lo eran, tenían de todos modos en contra, su asentamiento sobre terrenos empinados e inestables.

Estos dos elementos son los que en la ecuación que define el riesgo, llevaron éste a niveles muy altos, y por eso, siendo la magnitud menor que el sismo de Chile de 2010, fue comparativamente mucho más catastrófico, vale decir que su intensidad fue mayor.

¿Cuál es la explicación geológica de este evento?

Como todos los megaeventos, la explicación debe buscarse en la Tectónica de Placas. Toda la teoría en detalle la iré explicando lentamente, para lo cual vengo presentando otros temas previos y necesarios, pero hoy haré un pequeño resumen que espero no los complique demasiado.

En este caso particular, el Himalaya es resultante de la convergencia de dos placas: la Eurasiática y la de India, y el proceso resultante se denomina obducción.

Veamos un poco más:

La placa de la India ha estado moviéndose hacia el norte desde hace unos 100 millones de años, con lo cual, la litósfera oceánica- antes interpuesta entre los bordes continentales de ambas placas- se fue consumiendo, al moverse bajo la placa asiática, en lo que originalmente era una subducción.

En algún momento quedaron enfrentados dos bordes continentales, ninguno de los cuales es lo bastante pesado como para hundirse por debajo del otro, con lo cual, ambas placas colisionan sin hundirse. Esto se llama obducción.

El resultado de esta convergencia es una línea de sutura entre las placas preexistentes, que formó nada menos que la cadena que se considera el techo del mundo, y la meseta tibetana, también la más elevada del planeta.

Geológicamente esta colisión ha generado un anormal espesamiento de la corteza continental, simplemente porque los materiales que no pueden hundirse, se apilan unos sobre otros. Esto genera presiones que provocan deformaciones en las rocas, tanto en forma de plegamientos como de fallas inversas, y en zonas más profundas, hasta fusión de rocas.

No obstante, estas rocas ígneas se enfrían en profundidad, ya que la línea de sutura formada, de alguna forma sella las salidas posibles del magma. Es por esa razón que el vulcanismo no es un rasgo importante en el Himalaya.

Las mediciones recientes demuestran que la placa índica sigue empujando todo el complejo hacia el norte aún hoy, a una velocidad de entre 3 y 5 cm anuales.

Esto implica que cuando hay un tiempo de demora o un alto en los desplazamientos, las presiones se acumulan, hasta dispararse de modo repentino en la forma de un sismo de respetable magnitud.

¿Qué puede esperarse ahora?

Por un lado los fenómenos de remoción pueden seguir por algún tiempo.

Por el otro, como la placa afecta las relaciones a lo largo de todo el contacto convergente, es importante monitorear los signos precursores en toda la zona sísmica asiática más próxima, que ahora deberá reacomodarse hasta encontrar una nueva posición de equilibrio.

ÂTambién debe tenerse en cuenta que en el rompecabezas de las placas, la Arábiga se ha de haber visto «conmovida», y ella modifica los equilibrios a lo largo de la zona mediterránea sísmicamente activa.

No hay que alarmarse, sino simplemente estrechar la vigilancia que la ciencia hoy posibilita.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de un diario nepalí que encontré en la red.

Erupción del Volcán Calbuco en Chile

Volcanes junto al lago Llanquihue

Como todos seguramente saben, en este momento, un volcán de Chile se encuentra en plena actividad, emitiendo gran cantidad de cenizas a la atmósfera. Se trata del Calbuco, del que hablaremos un poco hoy.

¿Qué sabemos del volcán Calbuco?

El nombre del volcán Calbuco procede del idioma de la etnia mapudungún y resulta de la unión de los términos kallfü =azul, y ko= agua, es decir que significa «agua azul».

Se trata de un estratovolcán andino activo, localizado en la provincia de Llanquihue, en el sur de Chile, más específicamente en la región de Los Lagos, aproximadamente a 1000 km de distancia de Santiago y próximo a la comuna de Puerto Montt.

Forma parte de la reserva nacional Llanquihue, y tiene una altitud de 2015 msnm, en el punto en que sus coordenadas son 41°19’58″S -72°36’40″W.

¿Qué relación guarda con el Puyehue que estuvo anteriormente emitiendo cenizas?

Si bien ambos volcanes se encuentran en la misma región, y a nivel megascópico responden a la dinámica general de las mismas placas tectónicas (la Sudamericana y la de Nazca), forman parte de dos complejos volcánicos diferentes, y sus magmas son también de distinta composición.

En el caso del Puyehue, el complejo al que pertenece es el del Cordón del Caulle, y está configurado linealmente; mientras que el complejo al que pertenece el Calbuco es el de la Laguna de Maule, cuya forma es redodeada alrededor del centro ocupado por el agua.

También las antigüedades son diferentes, siendo el inicio del vulcanismo en la zona de la laguna mucho más reciente en términos geológicos.

¿Qué características tiene el complejo volcánico de Maule?

Este complejo tiene al menos 24 de los má¡s de noventa volcanes activos en Chile, todos los cuales son centros jóvenes que entraron en actividad hace unos 25.000 años, apenas ayer en la cronología geológica.

Según los registros históricos y geológicos, esos volcanes han estado intensamente activos al menos 36 veces desde su génesis.

El complejo de Maule es un sistema bastante particular, que ha concitado el interés de los investigadores de todo el mundo, y en él se llevan a cabo proyectos de investigación internacionales.

La principal razón para ello es que el complejo incluye numerosos centros activos, con magmas sumamente ácidos, de carácter riolítico, que por esa misma razón tienen alta viscosidad y consecuentemenete escasa movilidad. Esto provoca por un lado gran emisión de cenizas, tal como está ocurriendo en este momento; y por el otro, puede causar taponamientos que conducen a eventuales eventos explosivos, además de generar topografías aproximadamente cónicas.

¿Qué es la laguna de Maule? ¿Se trata de un antiguo cráter volcánico?

No en realidad, pese a que muchos lo creen así, la laguna no es maar, es decir que no se trata de agua que ha ocupado un antiguo cráter, sino que responde a dos procesos diferentes que le han dado su forma final.

En la porción norte, la laguna responde a la presencia de lo que se denomina una caldera, la que puede deberse a una de dos posibles causas: o bien una explosión resultante de un tapón viscoso que produjo acumulación de presión hasta la liberación final que eliminó parte de la topografía preexistente; o bien por un progresivo vaciamiento subsuperficial, al moverse los magmas hacia otros emplazamientos, que culminaron en un hundimiento o colapso del terreno.

La parte norte de la laguna se produjo al llenarse de agua esa topografía que se hizo negativa por el colapso del que hablamos, que pudo ser por explosión o hundimiento.

La porción sur, en cambio, se habría generado de manera más lenta, al acumularse las lavas en la periferia, lo que dejaba un área relativamente más baja, que actuó como reservorio de aguas pluviales.

¿Qué tipo de actividad tiene ahora el Calbuco?

El Calbuco llevaba 43 años sin mostrar signos de actividad, y a partir del 22 de este mes ha comenzado a emitir cenizas volcánicas. Conviene aclarar que las cenizas no son en este caso resultantes de una combustión, sino que se trata de material sólido finamente dividido, que es arrojado a la atmósfera y que dado su tamaño infinitesimal puede permanecer en suspensión en ella por mucho tiempo.

Esto implica que los vientos pueden movilizarlas a gran distancia antes de que se depositen, ya sea porque al unirse unas partículas con otras aumentan suficientemente de tamaño como para precipitarse a tierra, o porque al producirse una lluvia, sean arrastradas por ella.

¿Guarda este evento alguna relación con el sismo de 2010 y el enjambre del 19 de abril de este aÃño?

Seguramente ambas cosas se relacionan con lo que hoy está pasando, y ambas de diferente manera.

A pesar de que nos parezca que es mucho el tiempo transcurrido desde el gran sismo de 2010, para la morosidad de los procesos geológicos, las influencias resultantes siguen vigentes.

En efecto, los cambios profundos ocurridos en ese megaevento seguramente han modificado las estructuras subyacentes, de manera tal que se han abierto nuevos caminos para el ascenso de magmas hacia la superficie para alimentar los volcanes que hoy comienzan a hacere notar.

Lo que les manifiesto no es caprichoso, sino que puede observarse en los monitoreos de las deformaciones del terreno que se han intensificado en los últimos años, llegando a mostrar elevaciones en forma de domo de hasta 25 cm anuales, lo cual es llamativamente elevado.

Es casi seguro que ese abovedamiento esté siendo causado por los magmas que han comenzado a acumularse en la zona, probablemente en respuesta a las nuevas condiciones subsuperficiales generadas en buena medida por aquel sismo, o por los mismos eventos que lo fueron preparando también a él.

Por su parte, el enjambre sísmico del 19 de abril, más que permitir la movilización del magma, debe haber sido causado precisamente por ese traslado de las masas magmáticas, que hoy buscan su salida al exterior.

En suma, los eventos sísmicos fueron de distinto origen (tectónico el de 2010 y volcánico los de abril), pero todos se relacionan con lo que hoy se manifiesta.

¿Qué cabe esperar ahora?

En general, los mismos efectos que les señalé con motivo de las emisiones del Puyehue, lo cual pueden leer en el post que les linkeé más arriba.

Pero cabe agregar que las autoridades están realizando seguimiento de todos los geoindicadores del caso, de modo que lo más importante es estar atentos a sus indicaciones.

Lo que se está monitoreando hoy son principalmente las siguientes señales:

  • deformaciones del terreno.
  • emisiones de gases y su composición
  • sismicidad
  • temperatura

Y si se preguntan por qué se ven relámpagos durante la erupción en los videos que se están difundiendo, los invito a visitar el post al respecto que publiqué en 2011.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN04-10-1952-01.
Un abrazo. Graciela.

P.S.: La imagen que ilustra el post es del viaje del Pulpo y Dayana al sur de Chile en diciembre de 2014. En ella puede verse un mapa de madera colocado en uno de los miradores del lago Llanquihue que muestra la ubicación de los volcanes de la zona. El Calbuco es el que está abajo a la derecha de la imagen y aparece ilustrado con la punta cortada. Los otros dos son el Puntiagudo y el Osorno.

buscar en el blog
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Archivo