Entradas con la etiqueta ‘Tectónica’

Sigue la Tectónica de placas. Hoy límites convergentes entre placas de distinto carácter

Seguimos avanzando paso a paso en el conocimiento del actual paradigma vigente en Geología: la Tectónica de placas, o como yo prefiero llamarla, Tectónica Global.

Ya hemos adelantado muchos conceptos previos, y nociones generales. También hemos visto los tipos de contactos entre las placas, y hablamos de los bordes divergentes y de los convergentes entre dos placas oceánicas. Hoy veremos otro de esos tipos de bordes: un contacto convergente entre placas de distinto carácter.

¿Qué pasa cuando las placas involucradas son de distinto carácter?

Según ya he señalado otras veces, las placas continentales y oceánicas tienen diferente composición petrológica y química dominante, de modo que cuando ambas se enfrentan en un desplazamiento convergente, sólo una de ellas puede hundirse por su mayor densidad, y es la oceánica. La placa continental por sus propias características se resiste a descender. Es decir que, como se ve el gráfico, lo que allí llaman placa inferior, puesto que es la que baja en dirección al manto, es siempre la oceánica. Como también es notable en el dibujo, la continental permanece en superficie, por lo cual allí la llaman superior, aunque no sea el término habitual.

En definitiva hay una subducción de la placa oceánica que porta materiales que cambiarán de estado, razón por la cual se considera que este tipo de contacto es destructivo, como expliqué en un post anterior.

¿Qué efectos tienen lugar en profundidad?

Ya sabiendo que la placa que desciende es la oceánica, cabe preguntarse qué va a sucederle en ese nuevo entorno en el que se va introduciendo.

Es algo obvio que la temperatura en profundidad estará lo suficientemente aumentada como para que se inicie un proceso de fusión de aquellos materiales que se encontraban en equilibrio en entornos mucho más fríos.

Por otra parte, la roca que presenta contenido de agua (como es normal en los fondos oceánicos) y es sometida a presión (también presente a grandes profundidades) presenta un punto de fusión más bajo que la roca seca. Esto lo he explicado también antes.

Por supuesto, este material fundido y caliente no es otra cosa que magma, que tiende a moverse hacia arriba, según el sentido de descenso de la presión confinante,

En determinadas situaciones, ese magma alcanza la superficie en el interior del continente, pero próximo al contacto subductivo, generando efusiones volcánicas, según veremos un poco más abajo.

En otros casos, el magma no llega a completar su ascenso sino que solidifica en profundidad, generando un engrosamiento cortical con rocas de carácter generalmente básico por su procedencia desde materiales del fondo oceánico. Ahora bien, como las placas en descenso también son portadoras de sedimentos que llegaron a los fondos marinos desde los continentes aledaños, tampoco esa composición es una regla de oro y el resuktado final presenta alguna variabilidad espacial.

¿Qué fenómenos se observan en superficie?

Analicemos ahora los efectos que pueden observarse en la placa que permaneció en la superficie, vale decir veamos qué pasa en el continente.

Si bien en principio el magma en ascenso es de tipo basáltico, suele ocurrir algo de asimilación al ponerse en contacto con las rocas del lugar, dando por resultado un material más enriquecido en SiO2 (sílice) tal como ocurre con las rocas de composición andesítica.

Este tipo de magmas, pueden provocar erupciones explosivas, que liberan grandes columnas de cenizas y gases volcánicos, tal como sucedió en 1980 en el volcán Santa Helena.

En la generalidad de las situaciones de subducción de una placa de litósfera oceánica hacia el manto, el proceso genera la formación de un arco magmático equivalente en cierta medida a los arcos de islas de que hablamos en otro post.

Ese arco, junto con el engrosamiento cortical mencionado más arriba, instala una cadena montañosa, conocida como orógeno que se manifiesta linealmente por varios miles de kilómetros de largo, y algunos cientos de ancho. Un claro ejemplo de orógeno es la cordillera de los Andes.

Los ambientes orogénicos implican altas temperaturas y presiones, generadoras de metamorfismo sobre las rocas preexistentes, además de importante actividad sísmica, esfuerzos compresivos tangenciales a la superficie del geoide, y ascenso de materiales ígneos, que pueden formar tanto cuerpos plutónicos a cierta profundidad como dar lugar a intenso vulcanismo.

Dado el caracter siálico de la corteza continental, es en estas situaciones donde pueden formarse los granitos y granodioritas y sus equivalentes volcánicos, todos ellos rocas ígneas de colores claros y densidad relativamente baja, con alto contenido de silicio y aluminio.

En la figura que ilustra el post puede verse la sección transversal de un orógeno con los ambientes tectónicos asociados.

En el arco magmático que mencionamos arriba, pueden distinguirse tres zonas: antearco, arco volcánico propiamente dicho o frente volcánico y retroarco.

El antearco se extiende desde la fosa oceánica generada por la subducción de la placa oceánica, hasta la porción continental donde aparecen las primeras manifestaciones volcánicas, conocido como arco o frente volcánico. La fosa normalmente se sitúa más allá del relieve continental emergido, a distancias variables del límite costero.

El retroarco se encuentra hacia adentro del continente, y se lo considera desde donde finalizan las manifestaciones volcánicas hasta el límite del orógeno.

Así como el orógeno andino se genera esencialmente por la subducción de la placa de Nazca por debajo del continente sudamericano, su continuación hacia el norte, que se manifiesta en la cordillera Cascade, es el resultado de la subducción de la placa de Juan de Fuca bajo la Norteamericana.

¿Se puede agregar algo más?

¿Algo? No, algo no, muuuucho más, pero todo eso será motivo de numerosos posts, ya que todo el paradigma está sujeto a revisiones continuas, y aparecen debates, dudas y discusiones que nos darán mil motivos de encuentro, aun después de que hayamos terminado de conocer las informaciones básicas, que todavía están también lejos de completarse. En otras palabras, no sueñen con que ya conocen todo lo necesario sobre la tectónica global.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela. P.S.: La imagen que ilustra el post es de este sitio. La otra figura es tomada de Varela, Ricardo 2014. Manual de Geología. Miscelánea 21 del Instituto Miguel Lillo ISSN 1514 – 4836, de donde tomé también alguna información.

Más de la Tectónica de placas

Como este tema da muchísimo para hablar, lo venimos desarrollando paso a paso, y hoy vamos a avanzar un poquito sobre otra de las formas posibles de contacto entre placas adyacentes.

En este caso serán bordes convergentes o de destrucción. Pero como ya hemos visto en otro post, este tipo de contactos puede presentarse de tres formas diferentes según el carácter de las placas involucradas a uno y otro lado de la línea de convergencia.

Hoy hablaremos del caso particular de contacto entre dos placas oceánicas.

¿Qué característica general comparten los contactos convergentes?

Como ya lo indica el nombre, este tipo de contactos implica la «destrucción» de material litosférico, que inicia un proceso complejo del que hablaremos en seguida, pero que básicamente compensa la «creación» de material que tiene lugar en los bordes divergentes de los que ya hemos hablado en otro post.

Este nuevo paradigma logró resolver el problema que hemos señalado también en otro momento, de explicar la relativa invariabilidad en la extensión de la superficie terrestre, pese a ese continuo surgimiento de nuevos materiales en las dorsales oceánicas.

En resumen, el material que en un lado se suma, en otra parte se consume en un ciclo que algunos asimilan a una cinta transportadora sin fin. Algunas aclaraciones al respecto ya hemos adelantado también antes.

¿Qué pasa cuando las dos placas convergentes son oceánicas?

Comencemos por recordar algo que ya conocemos: la composición dominantemente de Silicio y Magnesio de las rocas de los fondos oceánicos. Hablamos pues de materiales densos que pueden por ende volver a hundirse en dirección al manto subyacente.

Así es que cuando convergen dos placas oceánicas, una de ellas desciende por debajo de la otra, generando lo que se denomina «subducción».

Cabe preguntarse cuál de ambas permanece en superficie y cuál se hunde en cambio hacia el manto. Esto depende de la densidad y la velocidad fundamentalmente. Si hay diferencias litológicas desciende la más densa- que generalmente es también la más antigua- por debajo de la más ligera. En caso de haber escasas diferencias en ese aspecto, es la que se mueve con más velocidad la que se subduce.

El ingreso hacia el manto se produce según un cierto ángulo que es más empinado cuanto mayor es la velocidad de descenso, y que define un plano teórico a lo largo del cual se manifiesta mayor densidad de eventos sísmicos y que se conoce como Zona de Benioff, de la cual hablaré en un post específico porque es un tema muy jugoso.

A su vez, cuanto más bajo es el ángulo de descenso, por más extensión horizontal se notan los efectos de la subducción, tal como ya expliqué en otra oportunidad.

¿Qué efectos tienen lugar en profundidad?

Ya dijimos que la placa oceánica que subduce va ingresando según un cierto ángulo- tal como se ve en la figura- hasta alcanzar en algún momento la astenósfera o mayores profundidades mantélicas.

Por supuesto, una vez que esa corteza oceánica, que además es portadora de los sedimentos que se han ido depositando en los fondos marinos, llega a cierta profundidad se encuentra con un entorno de temperaturas en ascenso, tal como les expliqué en otro post.

Eventualmente ese aumento de temperatura será suficiente para provocar fusión en el material en descenso. A este efecto se suma el agua sobrecalentada, que por la misma presión a que la mayor profundidad somete a la placa en descenso, es expulsada y asciende hasta provocar también fusión en la roca de la porción sobreyacente del manto.

En este contexto, se inician procesos de efusión y generarión de volcanes desde el propio fondo oceánico. Ya veremos más abajo que algunos volcanes llegan a emerger, pero sigamos ahora con los efectos en profundidad.

Si observan el esquema que ilustra el post, verán que la placa que permanece en superficie, es en cierta medida arrastrada hacia abajo en su borde por la placa subducente, lo cual genera un espacio negativo del fondo oceánico que se conoce como fosa, que puede alcanzar grandes profundidades, y se sitúa a cierta distancia de los volcanes submarinos.

En definitiva, todo el sistema se conforma con: una placa en subducción, una placa que permanece emergida (ambas oceánicas), una fosa o complejo de fosas, y un alineamiento de volcanes submarinos que pueden o no alcanzar la superficie.

¿Cómo se manifiesta en superficie el contacto subductivo entre dos placas oceánicas?

Por supuesto, hay una continuidad entre los fenómenos profundos y su manifestación superficial, de modo que dividirlos aquí es bastante artificial y sólo sirve para ordenar las explicaciones, ya que todo forma parte del mismo sistema complejo.

Esas efusiones en el fondo oceánico, van construyendo en algunos sitios estructuras volcánicas que conforman verdaderas cadenas, algunos de cuyos picos emergen como islas. Dichas islas suelen estar separadas entre sí por algunas decenas de kilómetros, y las cadenas que constituyen pueden abarcar centenares de kilómetros de ancho.

Debido a la forma que afectan estas sucesiones de islas, reciben la denominación de «arco de islas volcánicas», o sencillamente «arco de islas». Su posición es normalmente próxima a la fosa que forma parte del mismo sistema. Así es que las fosas más profundas, como las de Mariana y Tonga tienen sus correspondientes arcos isla homónimos.

Casi todos los arcos de islas están en el Pacífico occidental, donde la corteza que subduce es relativamente antigua y densa, lo que le permite descender fácilmente en el manto, con un ángulo de descenso muy elevado, que llega a aproximarse a los 90 grados. Ese alto ángulo hace menos habitual la sismicidad, ya que la energía se disipa en el descenso más expedito.

En el Océano Atlántico sólo hay dos arcos de islas volcánicas: el de las Antillas Menores adyacente al mar Caribe, y el de las Sandwich del Sur.

En cuanto a las fosas mismas se contabilizan veinte, la mayoría en los bordes de la cuenca del Pacífico, que presentan una longitud de hasta 4.000 km, y un ancho de aproximadamente 100.

¿Se puede agregar algo más?

¿Algo? Mucho, en realidad, por lo que habrá otros muchos posts en los que iré revelando más detalles, matices, objeciones, discrepancias, etc. etc. pero aquí es interesante apuntar un par de detalles sobre la litología.

En general puede decirse que las rocas resultantes del vulcanismo en los fondos oceánicos tiende a presentar bajo contenido de sílice, ya que procede de los materiales fundidos de placas simaicas, con lo que las litologías son básicas, o eventualmente mesosilíceas si se va produciendo algún fenómeno de diferenciación magmática. Tampoco puede desestimarse una petrología más compleja si hay asimilación de materiales del manto sobreyacente y de los sedimentos que descienden con la placa en subducción.

No podemos cerrar el tema de hoy sin hacer notar que dos placas oceánicas enfrentadas, una de las cuales subduce implican necesariamente un relativo «cierre» de la cuenca oceánica, con lo que se acorta la distancia entre el borde de una de las placas oceánicas (la pasiva) y el continente que se desplaza como «pasajero» de la que se subduce, en caso de existir, claro, ese eventual pasajero. Esto, en miles o millones de años cambiará el carácter del contacto, que puede en algún momento pasar a ser un contacto subductivo entre placa continental y océanica, y no ya entre dos placas oceánicas.

Cómo serán los procesos en esta nueva situación será motivo del próximo post sobre el tema» contactos entre placas». Aclaro que no será necesariamente la próxima semana porque no quiero convertir este diálogo nuestro en un libro de texto, sino en algo variado y que nos vaya sorprendiendo cada vez.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela. P.S.: La imagen que ilustra el post es de este sitio.

Avancemos con la Tectónica Global

Ya venimos hablando hace rato del gran paradigma que enmarca todo el conocimiento geológico actual, y antes de seguir avanzando, convendría que repasaran los conceptos que ya hemos ido adquiriendo. Para ello, les dejo un link para que vayan a leer los temas que se supone que ya dominan, y les recomiendo seguir todos los links que en cada post vayan encontrando, para que su conocimiento sea más completo aún.

Lo último que habíamos visto es la historia de las reuniones y dispersiones de placas litosféricas que han tenido lugar a lo largo de la historia del planeta.

Hoy vamos a empezar a mirar con un poco más de detalle la manera en que esas placas se mueven unas respecto a otras, lo cual nos preparará para entender los fenómenos resultantes de esa dinámica.

¿Cómo es el movimiento general de las placas?

Las placas tectónicas se mueven casi permanentemente, con velocidades promedio de 2,5 cm/año, llegando en algunos sitios, o en algunos acontecimientos particulares, a triplicar y aún más esa velocidad. Los momentos en que por alguna razón el movimiento resulta impedido, son los que generan acumulaciones de energía que a su vez dan lugar a eventos sísmicos de gran magnitud, cuando finalmente se destraban.

Es importante tener en cuenta que debido a que el deslizamiento de las placas ocurre en un planeta acotado en el espacio, esas placas necesariamente se rozan entre sí en algunos puntos, colisionan en otros y se desgarran y deforman en otros sitios. Según cómo interactúen esas placas, se definirán diversos cambios, a veces espectaculares (sismos y volcanes, entre otros), y otras veces de extrema lentitud (metamorfismo profundo, por ejemplo).

Es por eso que los contactos entre las placas son las zonas más activas del planeta, y lo que pase en ellos dependerá del tipo de relaciones que se entablen entre esas porciones móviles.

¿Qué puede decirse del famoso símil con una cinta transportadora?

Antes de seguir adelante, es muy importante aclarar un concepto que puede conducir a malas interpretaciones.

Empecemos por señalar que existen algunos lugares en los que las placas se alejan entre sí, empujando en su avance a las restantes placas con las que están en contacto. Obviamente, ya que la Tierra no se expande en la medida en que estas derivas deberían provocar; en algún lugar, algún volumen de rocas debe perderse. Efectivamente, en los extremos opuestos, otras placas se hunden en las profundidades terrestres con lo que el circuito se cierra.

De resultas de este principio básico, resultó muy arraigado en el imaginario popular el concepto de una especie de cinta transportadora, asimilable a la de una fábrica o a la de una caja de un supermercado, un poco como lo vemos en la figura que ilustra el post.

Muy bonito, pero si lo tomaron al pie de la letra, cayeron en una trampa muy común, porque tal circuito no sería posible, por la sencilla razón de que la tierra no es una superficie plana horizontal como la de los ejemplos mencionados, sino que se trata de un cuerpo más o menos semejante a un esferoide (un geoide, en realidad, como les expliqué en otro post). Por tal razón, los movimientos de las placas no son lineales sino rotacionales, alrededor de ciertos puntos particularmente activos. Y por esa misma causa, las relaciones de contacto entre las placas son complejas y provocan diferentes procesos a veces muy espectaculares.

¿Qué importancia tiene el movimiento relativo de las placas?

Muchísima, ya que define no solamente los eventos que se producen en cada sitio del planeta, sino también el tipo de materiales que en esos eventos se originan, y la evolución posterior de su modelado. Son en definitiva la clave que permite interpretar el pulso mismo del planeta.

¿Qué tipos de contactos existen entre las placas?

Figura 1


Repito una vez más, entonces, que las placas pueden entrar en contacto entre sí de muy diversas maneras, y para sistematizar la información les he preparado el cuadrito introductorio que se ve en la figura 1 y que en seguida pasaremos a analizar con un poquito más de detalle.


Lo primero que notarán es que hay casos en que las placas se acercan entre sí hasta colisionar inclusive, situación en que se habla de bordes de destrucción, porque el material afectado cambia de carácter. Un término más neutral con que se designa esa situación es contacto convergente, en alusión a las direcciones relativas de los movimientos de las placas.

En otros casos, los contactos son divergentes, porque las placas se separan en lugar de aproximarse, y se llaman también de construcción, porque abren camino a la salida de nuevos materiales desde las profundidades. Existe por fin una alternativa donde el material no se gana ni se pierde, y de allí surge la denominación bordes de conservación, conocidos también como transformantes o de transformación por el cambio de carácter del movimiento relativo entre las placas. La figura que encabeza el post sintetiza esas tres alternativas, de manera lo bastante esquemática como para ser comprensible, pero haciendo la simplificación que les mencioné más arriba, de asimilar el modelo a deslizamientos lineales (ideales) en lugar de las rotaciones que ocurren en la realidad.

Allí donde ven las flechas enfrentadas se trata de contactos convergentes, donde se oponen, hay contactos divergentes, y las rupturas en los contactos divergentes, son contactos de transformación.

Valga este post como una introducción sencilla y esquemática, ya que a partir del siguiente encuentro en que abordemos este tema, ya estaremos metiéndonos en detalle en cada uno de los tipos de contacto, para entender la dinámica en ellos y los resultados característicos.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela. P.S.: La imagen que ilustra el post es de:

Khan, M.A. 1980. Geología global. Ed Paraninfo. Madrid. 202 págs. ISBN: 84-283-1047-5.

La teoría de la expansión de la Tierra

Otra vez vengo a traerles una teoría que fue originalmente creada como una explicación completa en sí misma, y que luego de pasar por un camino de evolución y tras sucesivas correcciones se transformó en el concepto de expansión del fondo oceánico; hipótesis que a su vez fue más tarde absorbida por el paradigma mucho más complejo que conocemos como Tectónica de Placas o Global.

Ya antes hemos hecho alguna referencia a la expansión del fondo oceánico y pronto vendrá un post muy detallado sobre ella, pero ahora veremos los conceptos previos que condujeron hacia su formulación final, y que en su momento postulaban una expansión de la Tierra toda, como causa suficiente para explicar su configuración superficial.

¿Cuándo y cómo surgió la idea de una Tierra en expansión?

En las primeras décadas del S XX, cuando recién empezaba a conocerse la Teoría de Wegener sobre la deriva continental, algunos pocos científicos se entusiasmaron con ella en lugar de defenestrarla como la mayoría, y aportaron sus propias observaciones. Entre ellos se encontraba Carey, quien hasta cuatro décadas más tarde- según veremos- siguió buscando comprobaciones científicas.

Esta teoría se fue generando a través de las siguientes observaciones:

  • En los tiempos actuales sólo un tercio de la superficie planetaria está ocupada por continentes. En la teoría de expansión se explicaba esa característica suponiendo un tiempo en que la cubierta habría sido continua y se habría ido fragmentando como respuesta a una Tierra con un volumen cada vez mayor. Un efecto semejante al de la camisa del increíble Hulk que terminaba hecha pedazos cada vez que el pacífico científico se convertía en un mutante superdesarrollado.
  • El ajuste de las costas de continentes que antes habrían estado unidos es mucho más preciso si se lo imagina sobre un globo terráqueo más pequeño que el presente.
  • Se explican bien de esta manera los fenómenos tensionales, salvando así la principal crítica a la anterior teoría de contracción.

Les recuerdo una vez más que esta teoría no pudo superar determinadas objeciones, de modo que sólo sobrevivió en el marco de la Tectónica Global, a través de su «hija», la teoría de expansión del fondo oceánico, que ya analizaremos en el futuro.

¿Qué posibles causas se sugirieron para la expansión global?

Si bien nunca se alcanzó un acuerdo, y la formulación de las diversas explicaciones posibles siempre partía de postulados previos esencialmente especulativos y sin comprobación absoluta, voy a presentarles ahora las dos hipótesis con mayor consenso:

  • Decrecimiento del valor de la constante de la gravedad G. Esta teoría fue formulada por el ingeniero británico Paul Adrien Maurice Dirac nacido en Brístol, el 8 de agosto de 1902, y fallecido en Tallahassee el 20 de octubre de 1984. Este científico fue uno de los impulsores de la mecánica cuántica, y propuso el decrecimiento de G como la explicación válida no sólo para la expansión de la Tierra sino de la del Universo todo. En su hipótesis, un valor de G que disminuye con el tiempo implica que también disminuye la presión en el interior de la Tierra, ya que depende de G, a través del peso que ejercen sobre los materiales profundos toda la columna de los sobreyacentes. Ese alivio de la presión se traduciría naturalmente en un aumento del volumen, es decir una expansión global.
  • Disminución de la densidad de los materiales del núcleo terrestre. En esta teoría el postulado de origen es que los materiales del núcleo son formas metaestables de alta presión, formadas junto con el planeta, y al enfriarse éste, los minerales habrían cambiado a fases más estables, de baja densidad. Disminuyendo la densidad, si la masa se mantiene invariable, lo que aumenta es el volumen, y ese aumento es el causante de la expansión de la Tierra en su conjunto. Conviene señalar que esta hipótesis es exactamente opuesta a la de Urey que veremos más adelante en otro post, y que supone un núcleo en crecimiento por migración hacia él de los materiales más densos del manto que lo envuelve. Como ninguna de las dos alternativas tiene comprobación suficiente, las dos posiciones tienen sus respectivos seguidores.

¿Qué pruebas sustentan la existencia de algún grado de expansión en la Tierra?

No son pocas, de lo cual se infiere que una cierta expansión se produce en efecto, aunque no alcance por sí misma para explicarlo todo, como era la pretensión original. Veamos algunas de esas pruebas.

  • Observación del bandeado de algunos fósiles. Entre muchos otros organismos que tienen anillos de crecimiento que pueden relacionarse muy bien con intervalos temporales y que a la vez son claramente visibles, los corales son de los que más utilidad prestan. Entre otras cosas porque hay ejemplares tan antiguos como los devónicos, con un excelente estado de conservación. Estos organismos tienen anillos de crecimiento diarios, con espesores del orden del medio milímetro, que quedan incluidos en bandeados más gruesos correspondientes a ritmos mensuales, y éstos a su vez en paquetes anuales. Contando y relacionando unos con otros llegó a establecerse que el año devónico habría tenido alrededor de 400 días. Esto puede explicarse muy bien con una rotación de la Tierra que se ha ido haciendo progresivamente más lenta con el tiempo, ya que en el intervalo en que antes rotaba 400 veces, hoy apenas llega a 365 giros sobre sí misma. Ese retraso, según muchos investigadores es el resultado directo de un aumento en el momento de inercia causado por la expansión planetaria.
  • Experimento de Carey.  Fue realizado según su diseño, en el año 1986, y en él se utilizaron dos receptores, representados por A y B en la figura que ilustra el post, y ubicados lugares de la Tierra distantes entre sí, pero alineados con el mismo quasar cuyas emisiones de radiación recibían. Debido a la curvatura de la Tierra, el receptor más próximo (A) recibiría primero la señal de las emisiones. Si se mide el tiempo de retardo y se aplican principios geométricos básicos, puede inferirse la diferencia de distancia entre cada punto de observación y el quasar. Repitiendo las mediciones y sus cálculos correspondientes cuando ha transcurrido algún tiempo, esa distancia no debería haber variado, si todas las posiciones son invariables. No obstante, en un intervalo de diez años hubo un cambio medible y no despreciable (C en el dibujo). Si las estaciones receptoras han permanecido en su sitio, una explicación muy posible para el hecho de que C haya disminuido, indicando que B está más cerca que antes del quasar, sería una disminución de la curvatura de la Tierra relacionable con una expansión de su volumen.
  • Otros indicios paleontológicos. Este aporte desde la Paleontología es muy interesante. Paso a explicarles. Comencemos por informarnos sobre algunos principios de la fisiología. La distancia máxima hasta la cual el corazón de un vertebrado puede bombear la sangre en las arterias del cuello para alcanzar el cerebro, es fuertemente dependiente de la fuerza de la gravedad que tiende a producir su retorno hacia abajo. A mayor gravedad, más tendencia al retroceso y menos distancia puede recorrer el flujo sanguíneo. Hoy los cuellos más largos por ese motivo son los de las jirafas. Sin embargo, en el pasado hubo dinosaurios que eran mucho más grandes y cuyos cuellos eran también bastante más largos. La explicación de por qué ese límite superior ha descendido tanto, podría ser, en parte, un aumento en la gravedad. Y una mayor fuerza de gravedad en el presente puede deberse a un aumento de la masa de la tierra. Y estando la masa estrechamente vinculada con el volumen, puede atribuirse ese cambio a una expansión terrestre, asumiendo que no se ha comprobado un aumento en la densidad de los materiales como para justificar esa diferencia. Como en algún punto anterior hemos hablado de un decrecimiento de G, les recomiendo especialmente ir a leer el post sobre la gravedad que he linkeado más arriba para entender claramente cómo es que el efecto gravitacional puede aumentar aun cuando la constante G decrezca o no cambie.

¿Cuáles fueron las críticas que se hicieron a esta formulación original?

En primer lugar, a partir de las diversas explicaciones que se formularon para explicar la expansión, se realizaron diversas mediciones de la proporción en que habría tenido lugar esa expansión. Ninguno de los resultados es consistente con la imagen actual del planeta.

En segundo lugar, así como la teoría opuesta (la de contracción que ya vimos en otro post) no podía explicar los procesos tensionales, en este caso la teoría de expansión no puede aplicarse para dar razón de los múltiples procesos compresionales que se pueden observar, sobre todo en las grandes cadenas plegadas.

Por estas críticas fue necesario resignar la pretensión de explicar la configuración superficial de la Tierra como resultante de su expansión global.

Lo que de ella se rescata, con el apoyo de las pruebas ya expresadas, resultó ser el germen del modelo de expansión del fondo oceánico que es parte integrante y esencial de la Tectónica de Placas, según veremos en un próximo post, con todo detalle.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela.

P.S.: La imagen que ilustra el post es de este sitio.

Otro pasito en el conocimiento de Tectónica de Placas

Tomado de Khan (ver Bibliografía)

Así como en su momento les conté acerca de otra teoría (Deriva continental según Wegener) que resultó ser el gran antecedente del actual paradigma, hoy voy a agregar otra que también aportó lo suyo, y que fue junto con la anteriormente mencionada, reformulada de manera que respondiera al nuevo conocimiento, eliminando de ella los conceptos obsoletos y erróneos.

Se conservan no obstante suficientes elementos de esa vieja teoría como para que sea necesario conocerla. De hecho, más adelante volveremos a revisarla desde otros puntos de vista por la importancia de su aporte para explicar este sistema tan complejo.

Estoy hablando de la Teoría de Convección en el manto.

¿Qué pretendía originalmente explicar la teoría de Convección en el Manto?

Si bien hoy resuelve, en parte al menos, otra pregunta diferente, en el momento de su generación pretendía explicar por sí misma todo el mecanismo de generación de cadenas montañosas. No estaba muy equivocada, aunque requería los ajustes que veremos en parte hoy, y en parte cuando avancemos un poco más en la comprensión del modelo completo de la Tectónica de Placas.

¿Cuándo fue formulada por primera vez, y quién la expresó en su forma completa?

El germen de la teoría aparecía hace más de un siglo en trabajos desperdigados y casi siempre desechados en su origen mismo. No obstante, hacia los locos años 20 (Siglo XX) Vening Meinesz recopiló y organizó esas ideas dispersas, y formuló la teoría en su primera aproximación, intentando con ella explicar las anomalías gravimétricas que observaba durante sus viajes en submarino, por zonas próximas a fosas marginales de los arcos islas de India Oriental.

Él especulaba que en las zonas de convergencia de células convectivas adyacentes (ya lo vamos a ir aclarando, tranquilos), se producía un descenso de material, que llevaba hacia abajo algo del fondo cortical menos denso, al que se denominó tectógeno y que justificaba el déficit gravimétrico observado.

Ya más adelante, en 1939, Griggs llevó a cabo uno de los primeros experimentos de laboratorio que intentaron replicar un modelo de escala global. Es el que se ve en la figura que ilustra este post, y sobre él fundamentó su teoría Holmes.

Paso a contarles brevemente cómo funcionaba el experimento:

Por supuesto el experimento requirió varias aproximaciones previas, a los fines de ajustar un artefacto que reprodujera en escala, las relaciones de espesor y densidad relativas de la corteza superficial y el manto profundo.

Para ello utilizó en el ensayo final, un gran tanque en el que la corteza estaba representada por una mezcla de arena y aceite pesado. Las características del manto se reprodujeron con una mezcla vítrea y viscosa. Las corrientes convectivas (que defino más abajo) se representaron con grandes cilindros en rotación.

En este ensayo, se demostró que el material representativo de la corteza, descendía allí donde las células convectivas se enfrentan entre sí, generando una especie de raíz liviana que por su propia densidad tiende luego a volver a ascender, inclusive elevándose más que la superficie circundante.

Estos resultados fueron utilizados en la interpretación de Holmes que explicó la orogénesis como les cuento en seguida.

¿Qué postula la Convección en el manto?

La base misma de la teoría requiere que el material del manto tenga cierta movilidad, y si bien este tema será tratado en detalle en varios futuros posts, les adelanto que tal cosa es posible.

La causa de la movilización fue atribuida en este modelo de Holmes a las inohomogeneidades térmicas. Asumiendo que la zona más próxima al núcleo está más caliente, su tendencia es a dilatarse y perder por ende su densidad. Recuerden que la densidad es igual a la masa sobre el volumen, y en la dilatación éste crece, de modo que el cociente es menor, y por ende el material resulta menos denso. Por esa razón tiende a flotar, ascendiendo hacia zonas más frías donde recupera su densidad y vuelve a hundirse generando ciclos en los que las células convectivas fueron idealizadas como se ve en la figura de la izquierda, donde el movimiento del material está esquematizado en las flechas del dibujo.

Ahora observen este nuevo gráfico y relaciónenlo con el experimento ya mencionado. Vean cómo en los bordes de la figura, se genera la raíz (a la que se dio en llamar tectógeno en este modelo) allí donde convergen dos células convectivas, con movimientos enfrentados. Raíz que luego ascendería formando las cordilleras. En el centro del dibujo se ven en cambio células de movimiento opuesto que «tironean» el fondo cortical en direcciones divergentes, hasta romperlo, dejando tras de sí remanentes que en esta teoría daban cuenta de la presencia de islas y dorsales oceánicas.

¿Qué permanece de esta teoría en el seno de la Tectónica Global?

Como ya les adelanté más arriba, esta teoría no fue desechada totalmente, sino que se incorporó como parte del paradigma vigente, que implica un modelo mucho más amplio y complejo. En otras palabras, la tectónica de placas y la convección en el manto forman parte del mismo sistema, al que todavía vamos a agregar algunos otros aportes en nuevos encuentros.

Lo que aportó este subsistema se puede resumir como sigue:

  • El flujo convectivo profundo existe, y es en gran medida la fuerza impulsora subyacente en el movimiento de las placas.
  • Las placas oceánicas (más pesadas) son las que descienden en el proceso conocido como subducción y las que conducen los materiales enfriados, nuevamente hacia abajo.
  • La rama ascendente de la convección, portadora de rocas calientes, normalmente fundidas, da lugar a las dorsales oceánicas, y las plumas calientes que generan arcos islas.
  • Los movimientos de las placas terrestres, responden en definitiva a desigual distribución del calor en el interior de la Tierra, tal como preconizaba este modelo de la convección.

Por cierto restan todavía muchas incógnitas, y hay diversas opiniones al respecto, pero volveremos sobre ellas como corolario de la Tectónica Global, cuando tengamos las cosas bastante más claras.

Lo que de plano se rechaza es la explicación de las dorsales como remanentes de una corteza continental separada en dos por la tracción de las corrientes convectivas. Pero ya hablaremos también de eso.

Bibliografía consultada.

  • Holmes A. 1952. Geología Física. Ed. Omega S. A. Barcelona. España. 512 págs.
  • Khan, M.A. 1980. Geología Global. Editorial Paraninfo. Madrid. ISBN 84-283-1047-5. 202 págs.
  • Tarbuck, E. J. y F. K. Lutgens.1999. «Ciencias de la Tierra». Prentice Hall, Madrid. 616 págs.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela.

P.S.: La imagen que ilustra el post es de Holmes (ver Bibliografía)

La figura 1 es de Khan, mencionado en bibliografía.

buscar en el blog
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Archivo