Archivo de la categoría ‘Geología en la vida cotidiana’

Un volcán de Argentina: el Tuzgle

OLYMPUS DIGITAL CAMERA

Existen en Argentina multitud de volcanes, ya sea activos, o como simples relictos de tiempos pasados, que ni siquiera son conocidos como tales por el público en general.

Veremos algunos de ellos porque vale la pena conocerlos. Hoy comenzamos con uno de la Puna, pero no sin antes hacer una introducción general.

¿Por qué hay tantos volcanes, muchos de ellos con actividad muy reciente, en Argentina?

Digamos primero que la gran mayoría de los volcanes, y sobre todo los activos, se encuentran encuadrados en la Cordillera de los Andes, que es a su vez parte del llamado Círculo o Cinturón de Fuego del Pacífico. Este nombre hace referencia a las zonas de contactos entre placas que encierran precisamente a ese océano.

En nuestro caso, las placas involucradas son la Sudamericana al este y las de Nazca  (más al norte) y Antártica (más al sur) por el oeste.

En este caso, las dos placas del oeste son subducidas bajo la sudamericana, lo cual provoca inestabilidad tectónica y actividad volcánica intensa. Todo esto lo vamos viendo en otros posts, relativos al tema Tectónica Global, sobre el que vamos avanzando lenta pero firmemente, para que cada punto se comprenda en plenitud.

¿Cuándo se considera que los volcanes son activos?

La definición clásica para un volcán activo, es que debe haber tenido alguna erupción comprobable en los últimos 10.000 años.

No obstante, los investigadores de Silva y Francis propusieron una subdivisión innovadora en 1991, la cual asume tres tipos de volcanes, aparte de los extinguidos y los meros relictos.

  • Activos son los que han registrado erupciones en las últimas tres décadas.
  • Latentes son los que tienen registros históricos de actividad.
  • Durmientes son aquéllos de los que no se conoce actividad histórica, pero presentan evidencias geológicas y/o geomorfológicas de actividad durante el Holoceno.

¿Dónde se encuentra y qué características tiene el volcán Tuzgle?

Según lo dicho, este volcán puede considerarse durmiente, y presenta aguas termales que se consideran parte de los fenómenos postvocánicos.

Desde el punto de vista de la clasificación de los aparatos volcánicos, el Tuzgle es un estrato volcán, localizado en la Puna Argentina, y dentro del Departamento Susques de la provincia de Jujuy,  a unos 7 km del límite con la provincia de Salta, y bastante al este (aproximadamente 120 km) del arco volcánico principal.

Presenta una altura de 5486 msnm, pero elevándose sólo unos 1.200 metros sobre la altiplanicie que lo contiene. Sus coordenadas son 24º 03’ de latitud Sur y 66°29′ de longitud oeste. Las lavas que se observan son progresivamente más jóvenes hacia el SE y SO.

¿Cuál es su marco geológico?

El Tuzgle según ya dijimos está en la Provincia Geológica Puna, en la parte sur del segmento norte, precisamente muy cerca del límite a partir del cual disminuye el ángulo con que se registra la subducción. El volcán está algo al norte de una cadena volcánica llamada Calama-Olacapato-El Toro. Todo el conjunto incluye 22 estructuras con edades que van desde el Mioceno Inferior hasta  el Pleistoceno. Forman también parte del sistema los Cerros Incahuasi, Quevar y Azufrero.

Toda la cadena contituye un sistema de fallamiento transtensional de primer orden, con rumbo NO-SE que atraviesa casi toda la Puna.

El volcán mismo ocupa la parte central de una depresión tectónica alargada en sentido N-S, limitada al este por una sucesión sedimentario-magmática ordovícica; hacia el oeste por facies clásticas y piroclásticas del Mioceno superior; al sur por un cordón de rumbo NO-SE de rocas del Paleozoico inferior.

El sustrato del volcán está conformaado por el basamento representado por la Formación Puncoviscana, sobre la cual yace en discordancia, una secuencia sedimentario-magmática ordovícica. Más arriba se describen areniscas y arcilitas del Cretácico Superior, tras una nueva discordancia aparece una secuencia clástica, suavemente deformada, que incluye ignimbritas dacíticas y riolíticas, y por encima, también discordantemente se describe la Formación Pastos Chicos.

¿Qué puede decirse respecto a los registros de su actividad?

Según los registros y sus dataciones, la actividad volcánica comenzó hace unos 500.000 años con la erupción de la ignimbrita dacítica-riolítica denominada Tuzgle, que formó una planicie de 60 km2 con espesores que varían entre 2 y 80 m.

Hace unos 300.000 años habría tenido lugar otra efusión, que formó un complejo dómico lávico dacítico denominado Complejo Viejo, con un volumen total de 3.5 km3.

Posteriormente el complejo dómico fue cubierto por lavas andesíticas. Hay también evidencias de posteriores colapsos del edificio volcánico.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post pertenece a De Bachelot Pierre J-P – Trabajo propio, CC BY-SA 3.0, y es tomada de este sitio.

Los colores de las piedras preciosas

Hace bastante tiempo, les señalé de pasadita, al hablar de una de las propiedades de los minerales – específicamente el color– de ciertas sustancias que se denominan cromóforos, y que hoy vamos a ver con un poco más de detalle, sobre todo relacionándolos con las piedras preciosas.

¿Qué son los cromóforos?

Suelen denominarse iones cromóforos, iones colorantes,  o cromóforos a secas, a ciertos elementos que sin definir el quimismo de una sustancia, están presentes en ella en cantidades traza, y son capaces de modificar el comportamiento del compuesto, con respecto a la transmisión de la luz incidente.

¿Cuáles son los cromóforos que comúnmente aparecen  en las piedras preciosas?

Aquellos elementos que tienen una ubicación aproximadamente central en la Tabla periódica, y que por tal razón forman parte del conjunto que suele conocerse como elementos o metales de transición. De entre ellos, los que afectan particularmente al color de las piedras preciosas, son los que tienen número atómico entre 21 y 30, y son específicamente: Titanio (Ti), Vanadio (V), Cromo (Cr), (del que toman el nombre las sustancias que nos ocupan) Manganeso (Mn), Hierro (Fe), Cobalto (Co), Níquel (Ni) y Cobre (Cu).

¿Por qué los  elementos mencionados se comportan como modificadores del color en muchos casos?

Porque este grupo de elementos químicos constituyen una franja en las que los orbitales van saturando de electrones sus capas y subcapas de manera alternada. Esto les da a esas partículas una cierta libertad de movimiento entre orbitales cuando absorben energía, como la que provee la luz incidente. Esa relativa libertad se manifiesta al observador humano como modificaciones del color.

Por supuesto, van a tener que recordar algunos conceptos que conocerán seguramente de su pasaje por el secundario y de la propia Universidad, si es que han estudiado carreras que incluyan esa materia.

¿Qué conceptos de química conviene recordar en este punto?

Los conceptos que debemos recordar para mejor entender lo dicho, son los de orbital atómico, capa y subcapa. Repasémoslos.

Un orbital atómico es una región del espacio donde existe la mayor probabilidad de encontrar al menos un electrón. Por supuesto hablamos del espacio ocupado por una sustancia o cuerpo material dado.

Cada electrón se posiciona en algún lugar de una capa que se define por una serie de números cuánticos de valores enteros.

El número cuántico (n) principal crece con la distancia al núcleo atómico. Cuanto más cerca de él está el orbital, menor es su número cuántico principal.

Cada capa puede contener un cierto número máximo de electrones y tiene un número cuántico n, asociado con un particular rango de energía en función de su distancia al núcleo. Por regla general, cada capa sólo puede recibir o entregar electrones si todas las anteriores a ella están ya completamente ocupadas. La valencia de un elemento resulta de la ocupación de la capa más externa entre las que presentan electrones. Esas valencias determinan las propiedades y comportamientos químicos del átomo en cuestión.​

Las capas posibles se conocen como K, L, M, N, O, P, y Q, con números cuánticos que van de 1 a 7 respectivamente.

En cada capa, existe un número máximo de electrones, según se ve más abajo:

(1ª) Capa K hasta 2 electrones
(2ª) Capa L hasta 8 electrones
(3ª) Capa M hasta 18 electrones
(4ª) Capa N hasta 32 electrones
(5ª) Capa O hasta 50 electrones
(6ª) Capa P hasta 72 electrones
(7ª) Capa Q hasta 98 electrones

Como ya venimos adelantando, los electrones se disponen ordenadamente, primero en la capa más próxima al núcleo y cuando ésta alcanza su número máximo de electrones, los siguientes se colocan en la capa que sigue hasta que se satura, y así sucesivamente, hasta agotar los electrones disponibles.

Para que la cosa no sea tan sencilla, cada capa se compone a su vez de una o más subcapas, que a su vez se componen de los orbitales atómicos que definimos al inicio de este punto.

Las subcapas se denominan s, p, d, f, correspondientes a las iniciales en inglés de la palabra que mejor define su distribución o posición en el espacio tridimiensional. Esa palabras son: sharp (aguda), principal, difuse (difusa) y fundamental.

También acá hay un cierto orden ya que la primera capa (K) tiene una subcapa, llamada 1s; la segunda capa (L) tiene dos subniveles denominados 2s y 2p; la tercera (M),  tiene 3s, 3p y 3d; la cuarta (N) tiene las subcapas 4s, 4p, 4d y 4f;  y así suceivamente.

Pero ya dijimos que los elementos cromóforos, son los díscolos que no saturan sus capas de manera absolutamente predefinida, sino que eventualmente llenan sus subcapas de manera saltuaria. Y eso explica lo que debíamos explicar.

¿Qué ejemplos pueden mencionarse de la relación cromóforo- color de gemas?

Veamos algunos casos paradigmáticos:

El más importante de los cromóforos en Gemología es el Cr porque da color a las piedras preciosas más jeraquizadas, además de poder otorgar dos colores, el rojo y el verde, y hacerlo según líneas de absorción muy nítidas, lo que hace que los colores que genera sean intensos. El rubí y la espinela reciben de él su color rojo; mientras que le da tonalidad verde a la esmeralda, la jadeíta,  y el topacio rosa entre otras gemas.

Además, produce la variedad alejandrita del crisoberilo, que tiene la particularidad de verse verde con luz natural, y roja con luz artificial. Esto sucede porque la alejandrita presenta intensidades iguales para ambos colores, pero la luz natural tiene más longitudes en el rango de los verdes, y la artificial en la banda de los rojos.

Al Fe le deben el color los granates variedad almandino y piropo, el zafiro y los crisoberilos amarillos y verdes, la turmalina verde, y las espinelas verde y azul. Son resultados de su presencia los tonos rosados de la turmalina roja, la espessartita, la rodocrosita y la rodonita.

El Ti es responsable del zafiro azul; el V del zafiro violeta; el Ni de la crisopasa y la garnierita.

El Cu da su lugar a la turquesa, y por supuesto a la malaquitas y azuritas, aunque allí no es un simple cromóforo, sino que es constituyente principal.

En algún otro momento veremos otras circunstancias que modifican el color y no se deben a cromóforos.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post corresponde a las malaquitas y azuritas (minrales idiocromáticos) que se exhiben en el Museo de Los Ángeles, en Estados Unidos, y fue tomada por el Pulpo. Puede encontrarse en el Fliker de Dayana.

Primeros pasos de la explotación de petróleo en Argentina

Hoy vamos a consignar datos de interés histórico, relacionados con nuestra historia y con nuestra ciencia.

¿Dónde se descubrió por primera vez petróleo en Argentina?

En la ciudad de Comodoro Rivadavia, en la Provincia de Chubut, que forma parte de la zona productiva de la Cuenca del Golfo de San Jorge y que comprende también la costa de la Provincia de Santa Cruz. Se trata de combustibles de edad desde jurásica hasta cretácico-terciarias.

¿Qué antecedentes reconoce ese descubrimiento?

En 1902 se había creado la «Comisión de Estudios de Napas de Aguas»,  que fue la simiente de la «División de Minas, Geología e Hidrogeología» que habría de crearse en Buenos Aires el 25 de junio de 1904. El primer jefe de esta nueva División fue el Ingeniero en Minas Enrique Martín Hermitte, quien en 1905, acuciado por la extrema sequía que venía soportando la zona árida de Comodoro Rivadavia, envió hacia allí un equipo de perforación, en 1905.

La precariedad de las maquinarias por entonces disponibles habían determinado que perforaciones anteriores se inetrrumpieran sin encontrar el líquido buscado. Otro tanto pasó con esta perforación de 1905, que se detuvo a los 170 m. No obstante, se decidió la compra de un equipo Fauck, de origen alemán, que llegó a Comodoro Rivadavia el 14 de diciembre de 1906.

¿Cómo se produjo el alumbramiento de petróleo?

A fines de noviembre de 1907, tras largos meses de arduos trabajos, se alcanzó la profundidad de 515 metros- 15 más que los garantizados por los fabricantes de la maquinaria- sin encontrar ni agua ni ninguna característica de interés geológico. Esto determinó una nueva suspensión de las tareas y un intercambio de telegramas con la oficina central en Buenos Aires.

Los especialistas Beghin y Fuchs ordenaron entonces hacer un último intento, poniendo el límite de las tareas en los 600m, siempre que las instalaciones lo resistieran.

Acercándose ya a los 540 m, comenzó a aparecer una sustancia aceitosa que daba claros indicios de la existencia de petróleo, que surgió finalmente el 13 de diciembre.

¿Cómo continuó la historia?

De resultas de conocerse este nuevo recurso, el 24 de diciembre de 1910, se creó la «Dirección General de Exploración del Petróleo de Comodoro Rivadavia».

En 1913, los Dres Keidel y Windhausen, guiados por sus conocimientos geológicos, sugirieron la exploración de la zona de Challacó en Neuquén, en cuyas proximidades se encontró el petróleo de Plaza Huincul, el 29 de octubre de 1918, dirimiéndose así la controversia planteada entre ellos y Mosconi, pero eso es tema de un futuro post.

Posteriores descubrimientos en el territorio nacional, condujeron a la creación de YPF (Yacimientos Petrolíferos Fiscales) el 16 de octubre de 1922, durante la presidencia de Marcelo Torcuato de Alvear.

¿Qué cuencas petrolíferas se reconocen Argentina?

Los yacimientos de petróleo productivos en Argentina pueden reunirse en las siguientes zona:

  • Los del norte, que se encuentran en las provincias de Salta, Jujuy y Formosa, y están relacionados a las cuencas paleozoica y cretácica. La más antigua es predominantemente gasífera, como los depósitos de Bolivia, y forma parte de las sierras subandinas. En los últimos años la producción va declinando en buena medida porque no se han explorado nuevas zonas. Los yacimientos cretácicos son más petrolíferos, como es el caso de Caimancito o Palmar Largo, que presentan reservorios carbonáticos y volcánicos a profundidades del orden de los 3.000m a 4.000m.
  • En la región centrooeste del país, se encuentra la cuenca cuyana, que incluye rocas de origen continental y edad triásica, portadoras de petróleo solamente en la provincia de Mendoza.
  • La cuenca neuquina comprende la parte más meridional de la provincia de Mendoza, además de Neuquén, Río Negro y La Pampa. Es de origen principalmente marino y de edad jurásico-cretácica. Puede considerársela  como la de más potencialidad en el país por sus reservas tanto en yacimientos convencionales como no convencionales. Allí se encuentra la formación Vaca Muerta.
  • Cuenca del Golfo de San Jorge  que incluye partes de las provincias de Chubut y norte de Santa Cruz, tal como dijimos ya más arriba. Hasta el presente es la principal cuenca productora de Argentina.
  • En parte compartida con Chile, se reconoce la cuenca austral, que involucra a las provincias de Santa Cruz y Tierra del Fuego, tanto en el continente como en el fondo marino. Produce gas y petróleo en rocas sedimentarias del Jurásico, Cretácico y Terciario.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.

P.S.: La imagen que ilustra el post es de este sitio.

¿Cómo se forman los paisajes con grandes bolas de rocas?

LOS TERRONES 061

Para referencia de tamaño, el arbusto que se ve en primer plano es apenas más alto que un hombre de estatura normal.

Aquí voy a referirme a aquellas grandes bochas que se encuentran incluidas en el relieve circundante, no a las formas esferoidales que aparecen a veces como elementos depositados sobre un terreno dado, como si fueran relativamente independientes de él, fenómeno del que conversaremos en otro momento.

Los paisajes  en los que el modelado in situ arroja un espacio de formas redondeadas de gran dimensión, generan un gran atractivo turístico e impacto visual. Vale la pena que veamos cómo se generan.

¿Dónde se ven estos modelados?

Debido a su génesis, son típicos de rocas cristalinas, del tipo de los granitos y granitoides, que tienden a ser afectados por diaclasamientos (o sea fracturas sin desplazamiento relativo de los bloques resultantes) de direcciones claramente definidas, normalmente según dos sistemas conjugados aproximadamente perpendiculares entre sí.

Sobre este tema de fracturas y diaclasas hablaremos en detalle en algún otro post, pero por hoy basta con recordar que las rocas propensas a generar relieves con grandes bolas, son las que como requisito previo tienen «grietas» que se cortan entre sí en «enrejados» que dibujan ángulos rectos.

En nuestras Sierras de Córdoba son comunes en las áreas de batolitos o stocks graníticos expuestos.

¿Cómo se los denomina científicamente?

El conjunto del paisaje se conoce como de «erosión en bolas», aunque el nombre más correcto sería de «meteorización en bolas», ya que ocurre in situ, faltando el transporte  significativo de materiales, que es propio de los verdaderos procesos erosivos.

¿Por qué procesos se forman?

Como señalé más arriba, el requisito previo es la existencia de un sistema de diaclasas en enrejados perpendiculares. Esas fisuras definen volúmenes groseramente cúbicos en las rocas afectadas, y dan ingreso al agua, los organismos y demás agentes activos de la meteorización, tanto física como química, pero dominando esta última.

escanear0001granitobocha

Los detalles de lo dicho y lo que sigue a continuación se pueden observar bien en la figura adjunta, tomada del texto de Sawkins et al.

Ahora pensemos en que siempre las reacciones de meteorización química  son más intensas y veloces en las superficies de contacto entre los agentes de ataque y la roca atacada.

En este caso, vemos que cada cara de ese cubo teórico en que las diaclasas dividen al cuerpo litológico, es una superficie de ataque. En las aristas, en cambio, se ponen en contacto dos superficies de ataque, de modo que allí la meteorización se acelera.

Por último, en los vértices, son tres las superficies de ingreso de los agentes agresivos que se reúnen, con lo cual es todavía más rápida la descomposición. Esas diferencias en la velocidad del cambio se reflejan en la forma final casi esférica.

Y ¡voilá!, ya tenemos explicada nuestra incógnita.

¿Cómo evolucionan luego?

En muchos casos, las bolas graníticas tienden a ahuecarse, tal como vemos en la foto que ilustra el post, donde se observa una minicaverna natural, formada en uno de los bochones originales.

Esas oquedades se denominan taffoni, o tafoni, pero cabe agregar que no todos los tafonis responden al origen arriba descrito, sino que lo dicho es sólo una de las posibles génesis. De otras causas posibles iremos conversando con el tiempo en el blog.

La palabra tafoni podría tener diversas interpretaciones etimológicas, ya sea haciéndola derivar del  término griego taphos, que significa tumba; o del italiano de Sicilia, en el que taffoni, quiere decir ventana, y tafonare,  es perforar.

La razón por la cual se generan esas cavernas, que generalmente se ensanchan por su piso, es que allí, precisamente, es donde permanece más tiempo la humedad, y ya sabemos que el agua es un vector muy activo en la evolución del paisaje.

Precisamente por esa razón, es que muchas veces, el desgaste en la base quita sustentación al «techo» del tafoni, que termina por desplomarse.

A lo largo de una meteorización continuada, y en tiempos geológicos, también las bolas terminan desapareciendo.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela.

P.S.: La imagen que ilustra el post es tomada de: SAWKINS,F.J; CHASE,C.; DARBY,D.G.; RAPP.G. Jr.1974. “The evolving earth” Mac Millan Publishing Co.

La foto es de la Provincia de Córdoba, camino a Traslasierra.

Algunas «normas» de la evolución biológica. Parte 2

Como este post es continuación del de la semana anterior, en caso de que no lo hayan hecho ya, les recomiendo ir a leer la primera parte, antes de internarse en ésta de hoy.

La semana pasada contesté las siguientes preguntas:

¿Por qué es posible señalar algunas reglas evolutivas?

¿Cuáles serían las reglas evolutivas que han alcanzado mayor consenso entre los investigadores?

¿Qué es la complejidad progresiva de la biosfera?

Hasta aquí llegamos el lunes pasado, ahora seguiremos desde ese punto.

¿Qué es la ortogénesis?

Esta ley se relaciona claramente con la siguiente, según ya veremos.  Pero definámosla ahora.

Comencemos por decir que en su concepción original, el término ortogénesis implicaba algún grado de contaminación teológica y filsosófica, que no resiste las objeciones científicas.

En efecto, su formulación antigua implicaba un «diseño preestablecido» en la evolución, a la que se consideraba  encaminada hacia algún fin último. Se proponía pues, para la evolución un camino prácticamente lineal hacia una meta perfecta. Y aquí, la contaminación religiosa atribuía la definición de esa meta a un propósito divino.

No obstante, los científicos propusieron mecanismos medianamente orientados en una dirección dada, pero que respondían a procesos genéticos regidos por principios biológicos y físico químicos, respondiendo en gran medida a factores ambientales, pero que no excluían mutaciones aleatorias.

El término ortogénesis requirió, con el tiempo una redefinición profunda. En su concepción más actual, la ortogénesis se refiere simplemente a un principio según el cual  se puede observar que allí donde se cuenta con los fósiles suficientes como para documentar los cambios progresivos de un género o familia en particular, dichos cambios no representan saltos en cualquier dirección, sino que una vez instalados, parecen seguir una dirección definida.

Esto se relaciona también con el éxito alcanzado por cada cambio en materia de supervivencia y adaptación a las condiciones ambientales. Una vez que un cambio, que inicialmente puede ser aleatorio, como ya vimos en otro post, mejora la competencia de los individuos portadores de dicho cambio, las sucesivas mutaciones tienden a acentuarlo.

¿Qué significa la irreversibilidad de la evolución?

El proceso evolutivo es aditivo, es decir que va sumando cambios, lo cual hace tan complejos los resultados, que una vez que se desarrolla un taxón diferente, sus individuos no retroceden jamás a ser lo que sus antepasados fueron.

Las aves, que evolucionaron desde los reptiles pueden sufrir mil cambios evolutivos generando nuevas especies, pero nunca regresarán a ser reptiles.

La explicación es simple: en cada estructura- y su correspondiente función-  de los organismos vivos intervienen numerosos genes, combinados de manera compleja. Una nueva mutación, no reproduce esa misma combinación de genes. En situaciones de organismos más simples, con combinaciones más sencillas puede eventualmente producirse lo que se conoce como «homomorfismo», dando individuos parecidos, pero no idénticos en todos sus caracteres a los que quedaron atrás en el camino evolutivo.

Digamos entre paréntesis que el homomorfismo puede relacionarse con la convergencia adaptativa que veremos más abajo; pero puede ser también tema para un post en el futuro, porque es bastante entretenido.

¿Qué se entiende por especialización progresiva?

No es otra cosa que una gradual adaptación a las condiciones de vida en un lugar y situación dadas. Por supuesto ocurre a lo largo de extensos intervalos y a través de numerosas generaciones. Normalmente la especialización se va acentuando no en el organismo en su conjunto, sino sobre alguna de sus partes. Tal el caso de las extremidades anteriores que a partir de los reptiles se fueron especializando para el vuelo hasta generar las alas que ostentan hoy sus descendientes, las aves.

Algunos científicos señalan que una especialización progresiva particular sería el aumento de la talla que culmina en un auténtico gigantismo, muchas veces preludio de la extinción de géneros, especies o inclusive taxones más altos. Ellos citan ejemplos como los anmonites, y dinosaurios, entre otros casos de desarrollo extremo previo a la extinción. Profundizaremos esto en el post que dedicaremos a las extinciones, pero ya hemos adelantado algo en el post sobre  tipogénesis, tipostasia y tipólisis.

¿Cómo ocurre la adaptación al ambiente?

Se da en dos niveles: el del individuo, que aprende estrategias para mejorar sus condiciones particulares de vida, como podría ser la conducta juguetona, sumisa o hasta agresiva que asumen los animales callejeros en las zonas urbanas, para obtener comida; y a lo largo de generaciones, en el proceso evolutivo general. Ya explicamos aquí y en otro post que solamente los rasgos favorables para mejorar la adaptación al medio, son los que se perpetúan en el tiempo.

Como ya están esas explicaciones básicas, elijo ahora dos aspectos particulares que quiero destacar aquí y que están explicitados en la imagen que ilustra el post. Ellas son el isomerismo o convergencia adaptativa, morfológica o evolutiva, y la radiación adaptativa.

La convergencia evolutiva conduce a que individuos de grupos distintos, y hasta de biocrones muy separados entre sí, asuman formas muy semejantes, simplemente porque son las que mejor responden a las exigencias del medio.

En la imagen ven tres animales acuáticos, es decir que viven o vivieron en el mismo medio, y que perteneciendo a grupos muy diferentes, adoptaron todos una morfología  hidrodinámicamente óptima para medrar en el océano, como es la fusiforme. Se trata de un mamífero, el delfín; un reptil extinguido, el ictiosaurio; y un pez, el tiburón. Los tres se parecen, sin ser de un mismo género.

El efecto inverso también ocurre, cuando desde un antepasado común surgen diversas especies adaptadas a ambientes diversos. En la imagen ven diversos ursus, es decir osos, que se ven morfológicamente diferentes porque también lo son los climas, relieves y alimentos disponibles en cada uno de sus hábitats.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de este sitio.

Buscá en el blog
Nominado por Deutsche Welle, tercer puesto por votación popular
Archivo