Propiedades útiles para reconocer minerales: la electricidad.

Imagen1propiedades escalaresComo vengo haciendo lentamente, hoy voy a continuar dándoles elementos para que ustedes reconozcan los minerales por sí mismos.

Sobre todo, porque mal que nos pese, consultar por internet «¿qué piedra es ésta?» es bastante absurdo, como lo he explicado ya en otro post.

Las propiedades que dependen de los campos son las últimas que quedan por presentar entre aquéllas que pueden establecerse de manera sencilla.

Hoy comenzaremos por la electricidad, que obviamente se relaciona con campos eléctricos, pero nos limitaremos a analizar sus manifestaciones obvias en muestras minerales macroscópicas. Sobre otras aplicaciones de los campos eléctricos en Geología, vendrán más adelante muchos otros posts.

¿Cuáles son las propiedades eléctricas de los minerales?

Son las que se manifiestan a través de la producción de un campo eléctrico interno debido al reacomodamiento de las cargas presentes en la estructura atómica. Se consideran propiedades macroscópicas, porque a menudo se producen «chispazos» fácilmente visualizables.

Caracterizan especialmente a los minerales que son malos conductores, y que por tal razón se clasifican como dieléctricos. Se trata mayormente de aquéllos de aspecto vítreo, con brillo no metálico.

Se conocen dos o tres tipos (según el criterio que se aplique) de propiedades eléctricas en los minerales. Ellas son:

  • piezoelectricidad,
  • triboelectricidad, que para algunos es solamente un caso particular de la anterior, y
  • piroelectricidad.

¿Qué es la piezoelectricidad?

La palabra piezoelectricidad procede del vocablo griego «piezein», que significa apretar, y designa al fenómeno según el cual, algunos minerales se polarizan eléctricamente cuando son sometidos a tensiones mecánicas.

Se trata de una propiedad vectorial, ya que la presión debe ser ejercida a lo largo de ciertas direcciones bien definidas del cuerpo cristalino, en cuya geometría, es un requerimiento básico la falta de centro de simetría.

En esos casos, al ejercerse la presión sobre el cristal, y como respuesta a ella, los iones positivos se desplazan hacia un extremo y los negativos migran al otro; de tal manera que el cristal se polariza eléctricamente; o en otras palabras, en las caras opuestas surgen cargas de signo contrario entre sí.

Es muy notable el hecho de que también ocurre el fenómeno inverso, es decir que esta clase de minerales, si se exponen a un campo eléctrico, se deforman, aunque muchas veces el cambio sólo sea microscópico. Estas deformaciones son además casi siempre y casi totalmente, reversibles, ya que basta con alejar el material del campo eléctrico para que recupere su configuración original.

¿Desde cuándo se conoce la piezoelectricidad?

Si bien muchos atribuyen el descubrimiento a Pierre Curie, ya con anterioridad al menos dos científicos mencionaron y analizaron el fenómeno.

El primero fue René Just Haüy (1743 – 1822), mineralogista francés al que se recuerda como el padre de la cristalografía, y quien en 1817, estableció la polarización en la calcita y generó criterios para reconocer los distintos tipos de propiedades eléctricas en los minerales. Fue inclusive creador de los dispositivos que llamó electroscopios para investigar esos campos.

Entre los años 1875 y 1882, Antoine Henri Becquerel (1852-1908), físico francés, parte de una de las más ilustres dinastías científicas de París, estudió con algún detalle la polarización inducida por las rupturas a lo largo de los clivajes.

Y luego, en 1881, Pierre y Jacques Curie, estudiaron los efectos de la compresión, tanto en la turmalina como en el cuarzo, estableciendo que las cargas en ambos casos se dirigían a los extremos opuestos de los cristales.

¿Cómo se reconoce esta propiedad de manera sencilla?

En una forma práctica, cuando los cristales de determinados minerales, como el cuarzo por ejemplo, se golpean entre sí, ocurre una polarización de la carga, que se expresa en el fenómeno por el cual saltan chispas, y que fue aprovechado por los hombres primitivos para encender fuego, lo cual significó un asombroso avance en la civilización.

Una aplicación que todos utilizamos, sin estar conscientes de ello es la de los encendedores eléctricos, tipo magiclick, que tienen en el interior un cristal, generalmente sintético, que por ser piezoeléctrico, al recibir un golpe seco (como el del gatillo de la pistolita que simulan, o de la tecla en aparatos que lo traen incorporado) provoca un arco voltaico o chispa, que enciende la cocina, el mechero o el calefón, según sea el caso.

¿Qué es la triboelectricidad?

Como dije más arriba, hay quienes sostienen que solamente se trata de una división artificial del mismo fenómeno descripto más arriba, ya que en este caso se reemplaza la presión por un estímulo ligeramente diferente, como es la fricción.

El término se genera a partir del vocablo griego tribein, que significa frotar, y una manifestación, no relacionada con los minerales la hemos experimentado seguramente todos, cuando nos quitamos ropas sintéticas en la oscuridad y vemos que a partir del roce se generan chispas.

¿Qué es la piroelectricidad?

La palabra procede del griego pyrós, que significa fuego, y el fenómeno, similar a lo que ya les vengo explicando, se produce por aumento de la temperatura de un cristal.
A la hora de decidir si se trata de una propiedad escalar o vectorial, hay dos aspectos a considerar: si bien el cuerpo se calienta o enfría uniformemente (propiedad escalar), el desplazamiento de los iones positivos respecto de los negativos, implica una clara orientación, con lo cual la piroelectricidad termina por considerarse vectorial.
Y esto nos lleva a analizar cómo se produce la polarización por calor, que de manera sencilla se comprende porque al modificarse la temperatura, la materia se contrae o dilata, con lo que los átomos se desplazan unos respecto de los otros, y con ellos sus cargas.

¿Sencillo, verdad?

¿Desde cuándo se conoce la piroelectricidad?

Los primeros registros datan de 1824, y se deben al científico y naturalista escocés sir David Brewster (1781-1868), que reconoció el fenómeno en la sal de Rochelle, un tartrato de sodio y potasio con fórmula KNa (C 4 H 4 O 6)· 4H 2o que es también piezoeléctrico.

Más tarde, el efecto piroeléctrico se descubrió en minerales como cuarzo, turmalina y otros.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela.

Visita virtual a Iquique, Chile.

Otro de los videos de Guille,  y Dayana, mis «corresponsales viajeros», que descubren lugares sobre los cuales yo debo después explicarles la dinámica y significación geológica. Y no duden de que lo haré.

¿Cómo se manifiesta una erupción volcánica?

Imagen1erupcineYa en posts previos les adelanté conceptos relativos a efusiones centrales, es decir a los volcanes.

Y ahora iremos sobre el tema de las erupciones volcánicas

¿Qué son las erupciones volcánicas?

Ya señalé en otros posts que cuando el magma asciende hasta llegar a la superficie, se generan efusiones que adquieren diversos nombres según sea la geometría del espacio por el que sale al exterior.

Las lavas que surgen por un único centro se denominan precisamente efusiones centrales o erupciones, e involucran un aparato volcánico del que ya les hablé también.

¿Qué elementos diferencian unas erupciones de otras?

Los factores que se observan para definir qué tipo de erupción tiene lugar, son:

  • las proporciones relativas de cada uno de los elementos presentes, que llamaremos simplemente sólidos, líquidos y gaseosos, en esta introducción, pero que veremos en detalle en otro post más adelante,
  • la mayor o menor violencia del evento,
  • la distancia vertical a la que los materiales son eyectados,
  • la mayor o menor velocidad de flujo de las lavas,
  • la existencia o no de taponamientos en el cráter, y la ocurrencia o no de consecuentes explosiones y
  • las formas que se producen en el paisaje y la configuración del aparato volcánico resultante.

¿Cómo se clasifican las erupciones?

Primero debo repetir una aclaración que siempre hago cuando estoy por encarar una clasificación, y ella es que nunca podemos asegurar que todos los científicos coincidirán al dividir en grupos o clases una población dada. Y eso es así porque hay multiplicidad de criterios que pueden aplicarse en cada caso. Les recomiendo que vean este post, para comprender mejor esta premisa.

Lo segundo que quiero aclarar es que muchas veces se confunde la clasificación de las erupciones, con la clasificación de los volcanes, dos cosas que se relacionan, pero no son idénticas.

En efecto, las erupciones son eventos, de resultas de la sucesión de los cuales, surgen los volcanes, con una forma que también permite clasificarlos a ellos.

Al clasificar erupciones, se describen fenómenos o modos de actividad; mientras que al clasificar volcanes, se describen formas resultantes de esos fenómenos.

La tercera aclaración es que un volcán dado puede cambiar sus modos de erupción a lo largo del tiempo.

Y por último, a veces cada una de las erupciones mismas, no son tan «puras», sino que pueden tener rasgos de más de una de las clases que veremos a continuación.

Y ahora sí, la clasificación de las erupciones que personalmente prefiero, es la siguiente:

  • Erupciones hawaianas
  • Erupciones peleanas
  • Erupciones plinianas
  • Erupciones estrombolianas
  • Erupciones vesubianas
  • Erupciones vulcanianas
  • Erupciones hidromagmáticas
  • Erupciones tipo lahar

¿Cómo es una erupción hawaiana?

Si fuéramos a elegir qué erupción presenciar, no tengan dudas de que yo elegiría ésta, simplemente porque es comparativamente «tranquila». Esto se debe a que se trata de magmas y lavas básicos, bastante fluidos, lo cual permite una salida de material sin taponamientos ni explosiones resultantes. Hay muy poco material sólido que se eyecte al espacio, y la velocidad del movimiento es lo bastante alta como para que las lavas se enfríen a gran distancia del cráter, generando verdaderos «ríos de roca fundida». Pero ojo, que son también las de mayor temperatura, así que no se crean que son totalmente inofensivas.

Su flujo es casi permanente y los volcanes que erupcionan típicamente de esta manera son el Kilahuea (o Kilauea) y el Maunaloa de Hawaii, estado que le da nombre al fenómeno.

¿Cómo es una erupción peleana?

Este tipo de erupciones toma el nombre de Montaña Pelada, o Mont Pelé en la Martinica, que es su más acabado exponente. Las lavas involucradas son mucho más ácidas, y por ende, más viscosas. Esa viscosidad muchas veces tapona el cráter principal, por lo cual, los gases ejercen presión sobre las paredes del cono, generando grietas laterales por las que escapan los mencionados gases, por demás tóxicos, que se desplazan ladera abajo en la forma de nubes ardientes, responsables de los daños en materia de vidas, como veremos alguna vez al contar el más recordado de sus eventos.

¿Cómo es una erupción pliniana?

Las erupciones plinianas también son provocadas por magmas ácidos y viscosos. Su grado de violencia y explosividad puede generar columnas eruptivas de altura suficiente (decenas de km) como para alcanzar la estratósfera.

Las erupciones plinianas pueden durar desde un día hasta meses. Pueden llegar a generarse flujos piroclásticos, cuyo peso puede determinar el colapso de todo el cono volcánico, y hay también por eso, capas de ceniza fina extendiéndose por centenares de km alrededor del cono emisor.

Diversos volcanes han tenido ocasionalmente erupciones de este tipo, y un ejemplo es la del Vesubio del año 79, que fue descripta por Plinio, de quien el fenómeno tomó el nombre.

¿Cómo es una erupción estromboliana?

Se la conoce también como Stromboliana, ya que toma el nombre del volcán Stromboli, de Italia, que suele tener este tipo de actividad.

Corresponde a magmas con tendencia ácida y muy baja fluidez, lo que define conos de gran altura y escasa extensión, que liberan gran cantidad de materiales sólidos fragmentados, a los que llamamamos piroclastos, y de los cuales, como ya les dije, hablaremos en otro post.

¿Cómo es una erupción vesubiana?

Su nombre se debe al Vesubio, (Nápoles, Italia) que presenta diversos tipos de erupciones a lo largo de su historia, pero que muchas veces se ha manifestado con la tendencia a generar explosiones resultantes del enfriamiento y solidificación de la lava, prácticamente en la propia boca del volcán, lo que impide la libre salida de los gases. Ello es debido a la alta viscosidad de los magmas ácidos que dominan en su cámara.

Las explosiones suelen eyectar los materiales solidificados a gran altura y por detrás de ellos, al quedar allanada su salida, se desprenden gases ardientes y lavas incandescentes.

¿Cómo es una erupción vulcaniana?

Muchos autores equiparan esta erupción con la anterior, pero la gran diferencia, que me parece digna de ser destacada es su magnitud, ya que en estos casos – con ejemplos como el Vulcano en las Islas Lípari y el Etna en Sicilia- la violencia de la explosión es tal que puede destruir todo el cráter, generando un gran espacio vacío al que se llama caldera, y dentro del cual vuelve a crecer un nuevo cono. Pero a esto lo veremos en detalle cuando clasifiquemos los volcanes resultantes, en un nuevo post.

¿Cómo es una erupción hidromagmática?

Es típica la erupción del Rakata, responsable de la destrucción de la isla de Krakatoa, al este de Java, como reza la película. Otro ejemplo es el Perbuatán en la misma isla.

En estos casos, o bien la cámara magmática se posiciona muy cerca de una napa de aguas subterráneas, o bien hay una filtración importante de aguas pluviales en el interior del sistema volcánico, lo cual genera una enorme presión en el volcán, que termina estallando con violencia exacerbada por la conjunción de los materiales propiamente magmáticos y el vapor de agua sobrecalentado.

¿Cómo es una erupción tipo lahar?

En realidad se trata de dos fenómenos distintos, que juntos generan un fenómeno al que se denomina lahar.

La erupción s.s. puede ser de cualquiera de los tipos arriba mencionados, pero dispara luego otro evento, porque al estar estos volcanes en cordilleras de gran altura, sus cráteres se encuentran por encima del nivel de las nieves perpetuas, y cuando se producen erupciones, se funden los glaciares allí existentes, generando aludes de nieve (valga la redundancia), desplazamientos de tierra, y bajadas de lava en pendientes abruptas, todo lo cual en su sinergia, da lugar a la generación de un lahar.

Un ejemplo típico fue el volcán Arenas que produjo una catástrofe por su asociación con el Nevado de Ruiz, en Colombia.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela.

P.S.: La imagen que ilustra el post es de este sitio.

La UBA gana por primera vez la semifinal del premio IBA

La competencia 2018 de la AAPG (American Association of Petroleum Geology) denominada Latin America and Caribbean Region (LACR) Imperial Barrel Award (IBA) alcanzó un récord este año, con la participación de 24 universidades de nueve países.

El premio IBA se otorga a través de una competencia en que grupos de cinco estudiantes analizan datos geológicos, sísmicos y petrofísicos provistos por AAPG y otros sponsors. Los estudiantes pasan ocho semanas desarrollando prospectos de exploración, y los presentan luego a un panel de expertos de la industria.

Cada año, los ganadores de las semifinales, representan a la región en la competencia global que se realiza antes de la AAPG Conference and Exhibition (ACE) en Estados Unidos.

Este año, es precisamente la Universidad de Buenos Aires la que- por primera vez- ha ganado la competencia semifinal.

La competencia final tendrá lugar en mayo.

Para más información, pueden dirigirse aquí.

Agradezco a Sofía Manusakis que me acercó la información.

El terremoto en Coquimbo, Chile. Abril de 2018.

Imagen1coquimboUna vez más nos sorprende un evento sísmico acontecido en la vecina Chile, y de ello hablaremos ahora.

¿Qué características tuvo el sismo?

El sismo tuvo lugar a las 7h 19 minutos del día de hoy, es decir 10 de abril de 2018, con una magnitud 6,2 de Richter y epicentro a 54 km al sudoeste de Ovalle, en la Región de Coquimbo, Chile. Las coordenadas son 30,986° de latitud S, y 71,557° de longitud W.

La profundidad del hipocentro se calculó en 76,1 km, lo cual es relativamente somero.

No se registraron víctimas personales ni daños, y ni siquiera se vieron interrumpidos los servicios esenciales. Sólo se advirtieron deslizamientos en las rutas, a lo largo de zonas montañosas.

La falta de daños es porque la magnitud registrada es bastante moderada. El número puede parecer engañoso, pero no debe olvidarse que la escala Richter es logarítmica, de modo que un cambio ligero en la magnitud es un cambio enorme en cuanto a la energía realmente liberada.

¿Cuáles fueron sus causas?

El terremoto ocurrió muy cerca del anterior evento de Illapel, de modo que les sugiero ir a leer en el post que hice en su momento, las características regionales que en el marco de la tectónica de placas, explican este movimiento. Si bien las descripciones de los respectivos eventos no son intercambiables, sí comparten la causa, por lo cual no creo necesario repetirlas ahora.

¿Qué otra información puede relacionarse con este evento?

Les sugiero leer, si el tema los apasiona, los numerosos posts que bajo la etiqueta Sismos, he ido escribiendo en este blog, o si lo prefieren, pueden seguir los enlaces de los posts relacionados que aparecen al pie del presente.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela.

P.S.: La imagen que ilustra el post es de este sitio.

buscar en el blog
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Archivo