Entradas con la etiqueta ‘Volcanes’
¿Qué son las cavernas volcánicas?
Hace no mucho tiempo, les expliqué cuáles eran las partes que constituyen un volcán. Relacionado con ese tema, surge este otro, ya que las cavernas volcánicas comienzan siendo parte constitutiva de un aparato volcánico, pero no siempre ocurren, y a veces se abren al exterior a tanta distancia del centro eruptivo, que podemos intentar comprenderlas como unidades del paisaje relativamente independientes.
Así, pues, veamos qué podemos aprender sobre el tema.
¿Qué es una caverna volcánica?
Se denomina así a las aberturas que conectan zonas subsuperficiales con el exterior, pero que se encuentran generadas por el enfriamiento de lavas y/o flujos piroclásticos, que se desplazan ya en superficie. Algunas son simples cuevas de pequeño tamaño, y otras en cambio tienen una enorme extensión. En la foto, me ven en el ingreso de una caverna que se extiende por al menos un centenar de metros sin interrupción, en la isla de Rapa Nui.
Cualquiera sea su dimensión, las cavernas volcánicas se forman a partir de los mismos conductos por los que los materiales piroclásticos y las lavas son expulsados hacia la superficie del terreno, normalmente en topografías con una pendiente que permite a las lavas alejarse del centro ígneo inicial. En ese desplazamiento, el material se enfría y solidifica, en situaciones ligeramente diferentes, según veremos en seguida.
¿Qué tipos de cavernas volcánicas existen?
Debido a los comportamientos diferentes que resultan de las variaciones en composición química de las lavas, su contenido en gases, la temperatura exterior, etc., surgen al menos tres tipos de cuevas o cavernas volcánicas:
- Túneles de lava o lóbulos de drenado: suceden cuando los flujos de lava a lo largo del desplazamiento se solidifican desde afuera hacia adentro, como es lógico, y por ende, en el núcleo del cuerpo lávico el magma continúa fundido y fluyendo. En algún momento cesa la alimentación de material porque el pulso volcánico termina, y cuando toda la roca fundida escapa del conducto, queda la oquedad que llamamos caverna en general y túnel en este caso particular. Es el caso de la caverna de la foto.
- Cuevas de fragmentación: en este caso se requiere la coexistencia de piroclastos y lavas que también se enfrían desde afuera, generando costras rígidas, y que se fragmentan en el contacto entre la masa de piroclastos y la superficie de los flujos de lava, en respuesta a la fricción y las tensiones generadas en el desplazamiento. En esas porciones de ruptura, suelen generarse también espacios cavernosos, generalmente muy pequeños.
- Túmulos y crestas de presión: ocurren cuando los flujos de lava, al irse enfriando, pierden su capacidad dúctil y generan protuberancias, que al perder sustentación por el vaciado, se desploman dando lugar a cavidades de diferentes formas y tamaños. Precisamente cuando esas estructuras son muy pequeñ±as y orientadas hacia arriba, se las denomina respiraderos, porque por ellos se alivia la presión de los gases confinados en el interior de los flujos lávicos.
¿Cómo evolucionan las cuevas y cavernas volcánicas en el tiempo?
Como todo cuerpo expuesto, todos estos tipos de cavidades están sujetos a la erosión natural, pero también, a lo largo del tiempo han sufrido numerosas ocupaciones humanas, que muchas veces han modificado en alguna medida su forma y tamaño, y han dejado registros de interés arqueológico.
La resistencia a la erosión y meteorización de estas estructuras depende de su composición, y su estado, siendo en general más resistentes si son cuerpos de lava que si son materiales piroclásticos. Su duración no obstante, salvo intervenciones humanas es sólo medible en tiempos geológicos.
¿Qué importancia tienen?
En los albores de la historia antropológica fueron utilizadas como refugios y asentamientos, razón por la cual, como dije más arriba, suelen ser sitios de interés arqueológico, donde muchas veces se encuentran pictografías, restos de utensilios y fragmentos óseos que hablan acerca de la alimentación; pero que también son a veces sitios de disposiciones funerarias.
También para la Geología son de verdad interesantes, porque en su interior muchas veces pueden identificarse diferentes flujos individuales de lava, contactos entre lavas y brechas volcánicas, y numerosas microestructuras que relatan la historia del enfriamiento, entre muchas otras cosas.
Algunas cavernas, como la de Pucón en Chile que también tuve oportunidad de visitar, son sitios ideales para instalar la aparotología para el monitoreo de la actividad volcánica y sísmica asociada. Y ese seguimiento, de hecho se está realizando en el presente.
¿De dónde son las fotos que ilustran el post, y qué podemos agregar al respecto?
Tanto la foto en la cabecera como la del final del post son de la misma caverna en la isla de Rapa Nui (Pascua).
Debido a que la isla entera es de generación volcánica, está surcada por todo tipo de cavernas del mismo origen, pero hay también otras muchas cuevas excavadas por las olas en los acantilados y también excavacioens humanas y erosivas, de modo que no es sencillo establecer cuántas existen en realidad para cada tipificación genética.
Lo que es interesante es lo que quise mostrarles en la última foto, ya que en el interior, y a escasa profundidad existe una vegetación tropical, en parte natural, y en parte implantada por los nativos en el comienzo del siglo pasado, porque allí se refugiaban cuando comenzó la colonización europea, que fue cruenta y avasalladora.
Ocultos en las cavernas lograron sobrevivir pequeños clanes que conservaron, afortunadamente, una identidad cultural apasionante.
Ya antes, esta caverna y otras cuevas, volcánicas o no, habían sido utilizadas como refugios en las guerras entre clanes, por lo cual, se les dieron diversos usos fascinantes, pero eso ya es otra historia…
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
Una erupción hawaiana.
Como hoy es un día especial, de fiesta más que de cualquier otra cosa, ustedes y yo nos tomaremos un recreo. y para eso, les comparto un video que encontré en la red.
Las explicaciones científicas respecto al tipo de materiales, tipo de erupción y tipo de volcán que verán en este video, ya aparecieron en diversos posts, cuyos links encontrarán en este mismo texto.
Para empezar, si quieren, repasen también la clasificación de efusiones y de magmas que presenté hace bastante.
Y más básico todavía: recuerden las múltiples manifestaciones que componen el conjunto de los procesos ígneos.
Y ahora es el Etna…
Hace apenas un par de días, estuve explicándoles lo que pasa en Indonesia, y ahora nos sorprende (aunque no tanto) lo que ocurre con el Etna en Italia.
Analicemos pues esta nueva circunstancia. Digo más arriba que no nos sorprende tanto, y eso se debe a que este volcán es uno de los más activos del mundo en la actualidad. Por esa misma razón, ya hemos hablado de él en otro post que les recomiendo ir a leer en este link antes de internarse en la lectura del de hoy. En efecto, hoy voy a priorizar el tema de los sismos en la zona, dando por entendido que los datos del volcán mismo los leerán en el post que acabo de recomendarles. Aquí sólo verán lo que no esté en ese post anterior.
¿Qué dice la información periodística acerca del evento de hoy?
Específicamente este miércoles a eso de las 3:20 am locales, un temblor de 4,8 en la escala de Richter se hizo sentir en dos poblaciones sicilianas ubicadas en las cercanías del volcán Etna, dejando un saldo de al menos 10 personas heridas y numerosas estructuras y edificios dañados más o menos severamente. El epicentro se ubicó entre las localidades de Viagrande y Trecastagni, cercanas a Catania, y si bien este movimiento no es el primero de la semana, sí es el más fuerte registrado desde que el Etna entró en erupción el lunes pasado. (Anoten este dato, porque lo explico más abajo).
El Etna hizo erupción a partir del lunes temprano, cuando lanzó una nube de cenizas, y hoy miércoles, luego de sentirse una fuerte explosión, se reportó que una nueva fractura, esta vez en el lado sudeste del aparato volcánico, había dejado salir lava desde un área que no había liberado material desde hace más de diez años.
Según el Instituto Nacional de Geofísica y Vulcanología de Italia (INGV) el día lunes, a lo largo de solamente tres horas, se produjeron más de 130 terremotos.
¿Dónde está ubicado el volcán Etna?
El Etna está situado en la costa este de Sicilia, entre las provincias de Mesina y Catania. Su altura aproximada es de 3.330 metros, variando en función de la dinámica de sus erupciones. Su superficie en la base es de alrededor de 1.190 km2, con una circunferencia de unos 140 kilómetros. Tiene coordenadas 37°45’18″³ de latitud N y 14°59’43» de longitud E. Se trata de un estrato volcán, y sus erupciones suelen ser de tipo estromboliano.
¿Por qué habría entrado en erupción en este momento en particular?
El volcán Etna se encuentra sobre la placa Euroasiática, la misma que se ha visto recientemente agitada en Indonesia, es decir que ambos acontecimientos están relacionados entre sí, y se deben a un cambio en el equilibrio metaestable en que las placas tectónicas se encuentran siempre. Cuando se producen movimientos en algún punto de una placa, como ya lo he dicho muchas veces, todo el rompecabezas del que ellas forman parte se agita y debe reacomodarse hasta encontrar una nueva situación de equilibrio. No es casual que el día 22 de diciembre se haya liberado magma en Indonesia y el lunes se haya despertado el gigante dormido del Etna. Esto se debe a que cuando hay sismos en un sitio, los emplazamientos de magmas profundos se ven afectados, ya sea porque se les abren fisuras que permiten su ascenso; o bien, por el contrario, porque los caminos preexistentes se cierran, y el magma busca otros nuevos.
Como sea, la actividad de las placas se acelera, y sus manifestaciones pueden ser sísmicas, volcánicas, o ambas.
Un último punto que quiero aclarar es que en este caso, el tipo de contacto entre las placas no es convergente (por ejemplo de subducción) ni divergente, sino de desplazamiento lateral, en lo que se conoce como falla de transformación, que todavía no he llegado a explicarles en profundidad, cosa que haré en otro post. No obstante, para los impacientes, siempre pueden leerlo en mi propio libro.
¿Cómo se relacionan los sismos con el evento volcánico?
En un post ya lejano en el tiempo, les expliqué que las causas de los terremotos pueden ser de diversas índoles. En este caso en particular, los sismos reconocen un origen volcánico, lo cual debería tranquilizarnos un poco, porque no suelen ser los de mayor magnitud. Más importantes suelen ser los tectónicos. Claro que eso no dice nada respecto a los daños que el volcán puede producir por sí mismo durante las erupciones.
¿Por qué parecen ir en aumento las magnitudes de los sismos, en lugar de disminuir?
Es probable que algunos de ustedes estén pensando que les he mentido muchas veces cuando digo que normalmente los sismos de un enjambre van disminuyendo su magnitud, porque la mayor parte de la energía se libera en el primer momento, cuando las placas que estaban trabadas se mueven repentinamente. Eso es cierto, pero ojo, que sólo es válido para los terremotos tectónicos. En este caso, siendo los sismos de origen volcánico, su comportamiento depende de la movilización del magma bajo la superficie, cosa que es bastante más impredecible. Para colmo, cada camino de ascenso de lava se va modificando con los propios sismos, y de allí los cambios en las características tanto de las erupciones como de los movimientos telúºricos acompañantes. ¿Queda claro?
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de esta página. Derechos de autor de la imagen Getty Images.
La erupción del «Hijo del Krakatoa». Diciembre de 2018

La flecha en el planisferio indica la posición aproximada del área afectada.
Una vez más, un evento geológico se transforma en noticia, y yo me siento obligada (bueno, en realidad el Pulpo me hace sentir obligada, llamándome a altas horas de la noche) a salir a explicarlo para los lectores del blog.
Esta vez se trata de la erupción del volcán mal llamado (o cuyo nombre está mal traducido) «Hijo del Krakatoa», y su consecuente tsunami, que están castigando nuevamente la zona de Indonesia.
Lo primero que debo aclarar es que este reciente acontecimiento me conduce a prometerles que en otro post les explicaré también la erupción ya legendaria de Krakatoa de 1883, que está genéticamente asociada con la de hoy. Pero esta vez vayamos a la situación actual.
¿Qué ha sucedido hace unas horas?
Según lo indicado por los reportes periodísticos, el 22 de diciembre de 2018, hacia las 18, hora local, y como consecuencia de la erupción del volcán Anak Krakatau («Hijo del Krakatoa»), acontecida poco antes, tuvo lugar un tsunami volcánico, cuyos resultados fueron 222 muertos, 843 heridos y 28 desaparecidos.
Más de 400 edificios y al menos nueve hoteles próximos a la playa resultaron con graves daños y es en ellos donde se han registrado gran parte de las muertes.
¿Cuál es la ubicación geográfica del mal llamado «Hijo del Krakatoa»?
Se encuentra en los relictos de la que alguna vez fue la isla de Krakatoa, situada en el estrecho de Sonda, entre Java y Sumatra, formando parte del Archipiélago Malayo, también conocido como Insulindia. Se trata del archipiélago más grande del mundo, por incluir más de 25.000 islas de diversos tamaños, agrupadas en tres grandes conjuntos: islas de la Sonda, islas Molucas e islas Filipinas.
Las Islas de la Sonda comprenden a su vez dos grupos: las Islas mayores de la Sonda, constituidas por Borneo, Java, Islas Célebes y Sumatra; y las Islas menores de la Sonda, que abarcan Bali, Lombok, Sumbawa, Sumba, Komodo, Rinca, Flores, archipiélago de Solor, Timor, islas Barat Daya, islas Tanimbar, archipiélago de Alor y los remanentes de la antigua isla de Krakatoa, con coordenadas 6°06’07» de latitud Sur y 105°25’23» de longitud E.
¿Por qué afirmo que Hijo del Krakatoa es el nombre incorrecto?
Porque si bien la designación de Krakatoa se aplica muchas veces al volcán que destruyó la isla original de igual nombre, el volcán que causó tal devastación se llamaba Rakata, y era uno de los tres que contenía la ínsula. En otras palabras, Krakatoa era la isla, no el volcán. Y aunque hoy se haya acuñado el nombre de Hijo del Krakatoa (Anak Krakatau), en buen castellano, lo correcto sería llamarlo Hijo del Rakata, o bien Hijo de (y no del) Krakatoa, si se entiende como figura ancestral la isla y no el volcán.
¿Cuál es la causa de estas erupciones?
La isla original y sus actuales remanentes, incluyendo el nuevo volcán, se localizan cerca de la región de subducción de la placa Indoaustraliana bajo la placa Euroasiática, que es por ende una zona geológicamente muy activa. De hecho, el archipiélago malayo completo se cuenta entre las zonas de mayor y más explosiva actividad ígnea del planeta.
Específicamente el archipiélago de Sonda involucra un proceso de subducción de corteza oceánica bajo otra placa que es también oceánica en la zona de contacto; lo cual genera un cinturón orogénico cuyas cimas emergen en forma de islas volcánicas. Por delante del arco volcánico se genera una muy profunda fosa oceánica asociada al contacto entre las placas, allí donde la Indoaustraliana desciende hacia el interior terrestre.
Al internarse en la profundidad, donde hay mayor presión y temperatura, el material de la placa en subducción se funde y genera magmatismo, que se expresa luego en el vulcanismo activo que construye- y eventualmente destruye- las islas, que se agrupan presentando la forma de un arco paralelo al límite de la placa que se mantiene en superficie, y que resulta convexo respecto a la placa en subducción. Esta forma ocurre porque las placas se comprimen a lo largo de bordes de ruptura y contacto, sobre la superficie relativamente esférica de la Tierra.
Estos procesos implican también intensa actividad sísmica, y una gran inestabilidad tectónica.
¿Qué tipo de erupción caracteriza a estos volcanes?
El volcán Rakata produjo en 1883 una erupción hidromagmática, a veces conocida también como freática, que destruyó la isla, generando lo que se conoce como un volcán caldera, con los relictos de la geografía original.
No obstante, ya en 1927 comenzaron nuevas erupciones volcánicas primero submarinas, y que a partir de fines de 1928 se convirtieron en subaéreas, cuando finalmente comenzó a emerger en forma de nueva isla el Anak Krakatau, que convirtió el complejo en un volcán compuesto. Este nuevo cono está creciendo a razón de aproximadamente 5 metros por año, y es el que está actualmente en erupción.
¿Por qué se relaciona el volcán con el tsunami?
Esto ya lo expliqué cuando hablamos de las causas de los tsunamis, pero puedo aclararles un poco más. En cada erupción que ocurre en un arco isla, suceden dos cosas: una perturbación de los fondos marinos bajo los cuales se moviliza el magma buscando su salida al exterior; y luego, la caída de grandes volúmenes de materiales volcánicos en el mar. Ambas cosas implican la ruptura de la situación de equilibrio metaestable de la zona afectada, y se generarán los que se conocen como sismos de origen volcánico, que por el emplazamiento del hipocentro, en las profundidades marinas, causarán como efecto resultante, un tsunami.
¿Qué cabe esperar ahora?
Por un lado pueden ocurrir más tsunamis como conseceuncia de la brusca irrupción de más materiales volcánicos en el mar, y por el otro, pero ya a muy largo plazo (quédense tranquilos, pueden pasar cientos de años), cabe la posibilidad de que, por la ubicación del Anak Krakatau, se produzca una nueva erupción hidromagmática, con resultados similares o parecidos a los de la erupción de 1883.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
El Volcán Tolimán de Guatemala y su leyenda.
Hoy voy a ocuparme de un sitio atractivo desde el punto de vista del turismo, pero también desde el análisis de las costumbres e historias populares.
¿Dónde queda y qué características tiene el Volcán Tolimán?
El volcán Tolimán se encuentra en el Departamento de Sololá, en Guatemala, a orillas del lago de Atitlán.
Se trata de un estratovolcán, con una altura de 3.158 m, relativamente joven, ya que data del Pleistoceno.
Sus coordenadas son 14°36’48» N, y 91°11’20» W, y la composición dominante es de andesita piroxenítica porfírica. Un rasgo característico es la presencia de un cono gemelo, algo más bajo que el principal (3.134 m); y de un domo formado al norte del cráter por las lavas que desde él se liberaron, y que se conoce como Cerro de Oro.
¿Qué cuenta la leyenda del Volcán Tolimán?
Como casi todas las leyendas de los aborígenes de América, involucra la historia romántica de una pareja víctima de un amor desventurado.
En este caso, se trata de la princesa Ixim, hija del cacique Tolimán, y de Pedro, el modesto artesano de la tribu. La diferencia en el status social de los enamorados impidió que la pareja se consolidara. Al cabo de un tiempo, un cazador forastero, deslumbrado por la belleza de Ixim, la raptó y la llevó hacia los montes.
Toda la tribu salió a buscar a la joven, pero tras varios días de exploraciones infructuosas, cundió el desánimo y la gente volvió a sus tareas habituales. Todos salvo Pedro, que siguió para siempre vagando por la región en busca de su amada.
Pasado un tiempo, la princesa logró quitarle un puñal a su raptor, con el cual se quitó la vida, generando en su pecho una herida redonda como el cráter volcánico. El suspiro final de Ixim se convirtió en flor y voló hasta Pedro, quien siguiendo esa señal localizó a la princesa, que ya estaba muerta. Fue tanto su llanto, que llenó el valle de lágrimas, dando nacimiento al lago Atitlán; y él mismo, en señal de su ardiente amor y su desesperación, se transformó en volcán.
¿Cuál es el verdadero origen de ese volcán?
Por cierto, las explicaciones geológicas son bastante menos románticas, y revelan tres ciclos de crecimiento del complejo volcánico, con grandes erupciones meso silíceas a silíceas, y la formación de calderas.
El primero de los ciclos ocurrió hace entre 14 y 11 millones de años (Ma) y culminó con la formación de la gran caldera llamada Atitlán I, situada al norte del actual lago homónimo.
El segundo ciclo es de hace aproximadamente 10 a 8 Ma, y termina con los siguientes eventos: erupción de San Jorge, colapso generador de la caldera Atitlán II y un estadio final de inyección en forma de diques anulares.
El tercer ciclo ocurre durante el último millón de años, e incluye el crecimiento de los estratovolcanes cuaternarios, entre ellos el Tolimán, y la formación de la moderna caldera de Atitlán III.
Durante cada ciclo, los magmas máficos (básicos) cambiaron su composición, al fundir corteza andesítica (mesosilícea), y llegando a emitir también grandes volúmenes de magmas riolíticos (ácidos).
Tan larga historia eruptiva responde a la presencia de un juego bien definido de fallas con rumbo NW y NE que dan paso al ascenso de magmas profundos, que son a su vez provistos por la presencia de una anomalía térmica importante.
Se trata de un «punto caliente» o hotspot, que se relaciona con la subducción de la Placa de Cocos y el movimiento hacia el este sudeste de la pequeña Placa del Caribe.
Pero no se asusten, todo esto les quedará más claro cuando avancemos un poco más en el conocimiento de la Tectónica Global.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de Wikipedia.
