Archivo de la categoría ‘Geología para principiantes’

Uno de los factores activos en la formación del suelo: el clima

No hace tanto tiempo, les hablé de los factores que inciden en la evolución de un suelo, dividiéndolos en activos y pasivos. Entre los activos les mencioné el clima. Hoy hablaremos de él.

¿Qué es el clima y qué elementos lo componen?

Sobre esos dos temas hay ya sendos posts que deben ir a leer antes de internarse en éste de hoy. Para eso les he insertado los links en la pregunta misma.

¿Cómo incide el clima en la formación y evolución del suelo?

Como iremos viendo en todos los factores, según vayamos hablando de ellos, cuando analizamos las consecuencias de los cambios en alguno en particular, estamos haciendo una simplificación bastante importante, porque el suelo es un sistema complejo, y como tal, todos los constituyentes van reaccionando sincrónicamente o como consecuencia posterior, a cualquier modificación de los demás. El tejido real es mucho más intrincado que lo que esquematizamos en su estudio.

Hecha esa salvedad, puede decirse que hay dos instancias diferentes en la injerencia climática sobre la evolución del suelo: una es directa, y la otra indirecta. En cualquiera de ellas sigue siendo un factor activo.

El efecto directo se relaciona esencialmente con el agua, que es el vehículo que transporta los elementos que reaccionarán entre sí, o se acomodarán en el espacio para generar finalmente las características químicas, físicas y biológicas que definen un suelo y su estado de evolución.

El efecto indirecto se manifiesta porque es decisivo en el desarrollo de la vegetación, otro de los factores de suma importancia y que veremos en detalle en otro post.

Es tal la importancia del clima, que llegó a establecerse una correlación a nivel mundial entre tipos de suelos y clima, que constituyó la base de los antiguos sistemas de clasificación de suelos. El hecho de que esos sistemas están en desuso sólo tiene que ver con que el conocimiento ha revalorizado otros factores, pero en ningún caso en la desestimación de la influencia climática. Efectivamente, hoy se sabe que las variaciones microclimáticas, que se manifiestan en pocos cientos de metros o kilómetros, generalmente en respuesta a otros factores, como el relieve, la biota y el material parental, implican el desarrollo de suelos con características muy distintas.

¿Cuáles son los elementos del clima más activos en la evolución del suelo?

En primer lugar las precipitaciones, porque son las que proveen el agua, que ya señalé más arriba que es el vector organizador de los elementos del suelo, y es también un agente geológico de primera línea, tal como expliqué en este post.

Básicamente, es el elemento que moviliza y pone en contacto entre sí los reactantes que definirán acciones químicas en el suelo; pero además, superficialmente es un agente erosivo por excelencia, y el estado de degradación o no de un suelo dependerá¡ de las condiciones de su escurrimiento, la velocidad de su desplazamiento, el modo de impacto de la lluvia, y la distribución de las precipitaciones en el tiempo.

Todo eso es definitorio para la evolución pedológica, como lo es el efecto indirecto que sobre la vegetación ejercen las condiciones del almacenamiento de agua en el perfil.

Por último conviene recordar que la humedad del perfil participa en la regulación de la temperatura que a su vez rige el desarrollo de la biota y modifica la velocidad de los procesos químicos.

¿Qué otros elementos del clima tienen efectos modificadores sobre el suelo?

Como acabo de adelantar, la temperatura incide en la macro y micro flora y fauna que tiene por hábitat el suelo; y define las velocidades de las reacciones químicas, además de restringir o favorecer los efectos de las heladas temporarias o de la formación del permafrost o capa permanentemente congelada.

La luz, provista por la radiación solar, es utilizada en la fotosíntesis de las plantas y contribuye a generar materia vegetal que es en sí misma otro factor y que en algún momento se transforma posteriormente en humus incorporado al suelo.

El viento, tiene influencia en la circulación atmosférica que a su vez define regímenes de lluvia, y participa en la regulación de la temperatura. Por otro lado, actúa como un agente erosivo, que elimina partículas de los horizontes superiores, que pueden llegar a ser completamente barridos a lo largo del tiempo. Además de todo eso, produce un efecto de desecamiento superficial, con pérdida de humedad del suelo, lo que incide en la biota; pero a veces los restos de la propia destrucción de la cubierta vegetal pueden terminar incorporándose como materia orgánica en el horizonte superior.

¿Qué resultados de la influencia climática son los más notables?

Como ya he dicho más arriba, el sistema es complejo y las generalizaciones resultan peligrosas, no obstante puede considerarse que en los ambientes en donde la temperatura es alta y la precipitación es baja, el desarrollo del suelo es mínimo, y los procesos de calcificación son dominantes, dando lugar a suelos alcalinos.

Cuando la temperatura y la precipitación son altas, se generan suelos profundos y de carácter ácido, cuyos procesos principales son la rubefacción, la lixiviación y la laterización.

En climas con temperaturas bajas y precipitaciones escasas, el desarrollo pedológico es mínimo y, eventualmente, puede formarse hielo. Los suelos tienen más características geogénicas, heredadas del material parental, que pedogénicas derivadas de los procesos de formación de suelos.

Si en cambio, la temperatura es baja y alta la precipitación, los suelos suelen estar bien desarrollados, con carácter ácido y  con procesos dominantes de podsolización y lixiviación.

Respecto a los contenidos de materia orgánica, en general los suelos tropicales contienen más carbono orgánico y nitrógeno total que los suelos templados, que a su vez tienen mayor proporción de constituyentes orgánicos que el piso forestal. Esto se debe a que las velocidades anuales de descomposición aumentan con la temperatura.

Respecto a la velocidad de producción de arcillas, es baja en ambientes secos- fríos, húmedos- fríos  y secos- cálidos, y aumenta con un incremento de la humedad y temperatura, hasta alcanzar la máxima en los ambientes húmedos- cálidos. Respecto a la mineralogía de esas arcillas, también varía con el clima aunque está fuertemente influenciada por otro factor: el material parental.

¿Cómo se tiene esto en cuenta en la taxonomía de suelos?

La taxonomía de suelos de los Estados Unidos se desarrolló a partir de 1975 y culminó con el Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys, que se actualiza permanentemente. En ella, los regímenes de humedad y temperatura son determinantes para clasificar los suelos, especialmente a niveles superiores.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.

Un volcán de Argentina: el Tuzgle

OLYMPUS DIGITAL CAMERA

Existen en Argentina multitud de volcanes, ya sea activos, o como simples relictos de tiempos pasados, que ni siquiera son conocidos como tales por el público en general.

Veremos algunos de ellos porque vale la pena conocerlos. Hoy comenzamos con uno de la Puna, pero no sin antes hacer una introducción general.

¿Por qué hay tantos volcanes, muchos de ellos con actividad muy reciente, en Argentina?

Digamos primero que la gran mayoría de los volcanes, y sobre todo los activos, se encuentran encuadrados en la Cordillera de los Andes, que es a su vez parte del llamado Círculo o Cinturón de Fuego del Pacífico. Este nombre hace referencia a las zonas de contactos entre placas que encierran precisamente a ese océano.

En nuestro caso, las placas involucradas son la Sudamericana al este y las de Nazca (más al norte) y Antártica (más al sur) por el oeste.

En este caso, las dos placas del oeste son subducidas bajo la sudamericana, lo cual provoca inestabilidad tectónica y actividad volcánica intensa. Todo esto lo vamos viendo en otros posts, relativos al tema Tectónica Global, sobre el que vamos avanzando lenta pero firmemente, para que cada punto se comprenda en plenitud.

¿Cuándo se considera que los volcanes son activos?

La definición clásica para un volcán activo, es que debe haber tenido alguna erupción comprobable en los últimos 10.000 años.

No obstante, los investigadores de Silva y Francis propusieron una subdivisión innovadora en 1991, la cual asume tres tipos de volcanes, aparte de los extinguidos y los meros relictos.

  • Activos son los que han registrado erupciones en las últimas tres décadas.
  • Latentes son los que tienen registros históricos de actividad.
  • Durmientes son aquéllos de los que no se conoce actividad histórica, pero presentan evidencias geológicas y/o geomorfológicas de actividad durante el Holoceno.

¿Dónde se encuentra y qué características tiene el volcán Tuzgle?

Según lo dicho, este volcán puede considerarse durmiente, y presenta aguas termales que se consideran parte de los fenómenos postvolcánicos.

Desde el punto de vista de la clasificación de los aparatos volcánicos, el Tuzgle es un estrato volcán, localizado en la Puna Argentina, y dentro del Departamento Susques de la provincia de Jujuy, a unos 7 km del límite con la provincia de Salta, y bastante al este (aproximadamente 120 km) del arco volcánico principal.

Presenta una altura de 5.486 msnm, pero elevándose sólo unos 1.200 metros sobre la altiplanicie que lo contiene. Sus coordenadas son 24º 03′ de latitud Sur y 66°29′ de longitud oeste. Las lavas que se observan son progresivamente más jóvenes hacia el SE y SW.

¿Cuál es su marco geológico?

El Tuzgle según ya dijimos está en la Provincia Geológica Puna, en la parte sur del segmento norte, precisamente muy cerca del límite a partir del cual disminuye el ángulo con que se registra la subducción. El volcán está algo al norte de una cadena volcánica llamada Calama-Olacapato-El Toro. Todo el conjunto incluye 22 estructuras con edades que van desde el Mioceno Inferior hasta  el Pleistoceno. Forman también parte del sistema los Cerros Incahuasi, Quevar y Azufrero.

Toda la cadena contituye un sistema de fallamiento transtensional de primer orden, con rumbo NW-SE que atraviesa casi toda la Puna.

El volcán mismo ocupa la parte central de una depresión tectónica alargada en sentido N-S, limitada al este por una sucesión sedimentario-magmática ordovícica; hacia el oeste por facies clásticas y piroclásticas del Mioceno superior; al sur por un cordón de rumbo NW-SE de rocas del Paleozoico inferior.

El sustrato del volcán está conformaado por el basamento representado por la Formación Puncoviscana, sobre la cual yace en discordancia, una secuencia sedimentario-magmática ordovícica. Más arriba se describen areniscas y arcilitas del Cretácico Superior, tras una nueva discordancia aparece una secuencia clástica, suavemente deformada, que incluye ignimbritas dacíticas y riolíticas, y por encima, también discordantemente se describe la Formación Pastos Chicos.

¿Qué puede decirse respecto a los registros de su actividad?

Según los registros y sus dataciones, la actividad volcánica comenzó hace unos 500.000 años con la erupción de la ignimbrita dacítica-riolítica denominada Tuzgle, que formó una planicie de 60 km²con espesores que varín entre 2 y 80 m.

Hace unos 300.000 años habría tenido lugar otra efusión, que formó un complejo dómico lávico dacítico denominado Complejo Viejo, con un volumen total de 3.5 km³.

Posteriormente el complejo dómico fue cubierto por lavas andesíticas. Hay también evidencias de posteriores colapsos del edificio volcánico.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post pertenece a De Bachelot Pierre J-P – Trabajo propio, CC BY-SA 3.0, y es tomada de este sitio.

Norman Bowen y sus importantes aportes a la Petrología

Hoy hablaremos de un científico que revolucionó tanto la Petrología como la Geología en general, y al que ya he presentado antes, a través de una parte culminante de su obra, su Serie de Reacción, tema que pueden consultar en este post.

¿Qué sabemos de la vida de Bowen?

Norman Levis Bowen nació hace más de un siglo en Canadá, más específicamente en Kingston, Ontario, el 21 de junio de 1887, y sorprende la vigencia de sus conclusiones hasta el día de la fecha.

Era hijo de un panadero, a quien ya desde niño ayudaba en el reparto. A partir de su adolescencia practicaba patinaje sobre hielo en invierno y natación en verano, llegando a participar en carreras de velocidad. En otro aspecto de sus actividades, cantaba en el coro de la Iglesia Anglicana de su localidad. Todo esto nos muestra su carácter inquieto y desestructurado. Completados los estudios secundarios, su objetivo fue la formación universitaria.

En el primer momento, Bowen se había inscripto en un curso de arte en la Universidad de Queens, luego de aprobar los exá¡menes de ingreso, con la intención de ser maestro. No obstante, como muchos jóvenes, sentía la necesidad de conocer un poco su país y de ganar algún dinero. Fue por eso que ingresó al equipo de mapeo geológico del Ontario Bureau of Mines (Oficina Minera de Ontario), con el que trabajó en Larder Lake bajo las órdenes de R. W. Brock, que llegaría a ser Director del Servicio Geológico de Canadá.

Brock muy rá¡pidamente reconoció las capacidades no sólo intelectuales sino también pragmáticas de Bowen, por lo cual le permitió realizar solo buena parte del trabajo. Fue esa campaña, en la que hubo que remontar corrientes en canoa, lidiar con toda clase de insectos, realizar mediciones y hasta cocinar por sí mismos, la que definió el rumbo posterior de la carrera de Bowen.

Efectivamente, fue en ese trabajo que la diferenciación de las diabasas atrapó su atención por primera vez, decidiéndolo a cambiarse a la Escuela de Minería de la Universidad de Queen, donde cursó Mineralogía y Geología.

Después de dos campañas más en los lagos Abitibi y Gowganda, donde aprendió más sobre las diabasas, ganó un premio de 25 U$A, y la medalla de Oro Presidencial, otorgados por el Instituto Minero Canadiense, por su trabajo «Diabase and aplite of the cobalt-silver area», que fue considerado el mejor trabajo realizado por un estudiante.

En 1909 se graduó como B.S. (Bachiller en Ciencias), y en 1910 obtuvo un cargo de asistente de investigación en el Laboratorio de Geofísica del Instituto Carnegie de Washington (CIW).

Durante ese tiempo, Bowen se casó con Mary Lamont, el 3 de octubre de 1911, con quien tuvo una hija a la que llamaron Catherine.

En 1912, y ya con su título de Ph.D. otorgado por el Instituto de Tecnología de Massachusetts (MIT), ingresó allí mismo como empleado del Laboratorio. Allí sus mentores fueron Reginald A. Daly, quien le transmitió la idea de que los fluidos basálticos eran el magma primario y que todos los demás derivaban de él;  y Charles H. Warren que lo introdujo en los principios de la físico-química, aplicados a los problemas mineralógicos y petrológicos. Estas influencias definieron el rumbo de su trabajo posterior.

Hacia 1915, Bowen había reunido información experimental suficiente como para publicar «The Later Stages of the Evolution of the Igneous Rocks», trabajo que lo posicionó como una figura de relevancia internacional a la edad de 28 años.

En 1919, Bowen renunció para ejercer como profesor de Mineralogía en la Universidad de Queen, pero lo suyo era la investigaciión y luego de dos años regresó al laboratorio de Washington, donde permaneció 16 años.

En la primavera de 1927, Bowen dictó un curso para estudiantes avanzados en la Universidad de Princeton, cuyas clases madistrales fueron el germen para su publicación de 1928 titulada «The Evolution of the Igneous Rocks». Nuevamente interesado en la docencia, retomó las clases en la Universidad de Chicago por el lapso comprendido entre 1937 y 1947, momento en que regresó al MIT Laboratory donde permaneció hasta retirarse en 1952. No obstante ess retiro no duró mucho porque en 1954 regresó como Investigador Asociado hasta su muerte acontecida el 11 de septiembre de 1956 en Washington, D.C.

¿Qué puntos se destacan en la obra de investigación de Bowen?

Cuando era muy joven, ya su trabajo de 1912, tiulado «The order of crystallization in igneous rocks», fue el precursor de un cambio significativo en la comprensión de la Petrología. Los otros trabajos que ya mencionamos más arriba sólo confirmaron sus teorías, y lo convirtieron en la gigantesca figura que hoy representa en las ciencias.

Pero probablemente su trabajo más importante es el estudio del sistema de dos componentes albita-anortita. Ese sistema ya había sido analizado por Day, Allen, e Iddings hacia 1905, pero fue Bowen quien continuó su desarrollo hasta completarlo e introducirlo en la Serie de Reacción que lleva su nombre.

¿Por qué es tan relevante su aporte a las ciencias geológicas?

Norman Levi Bowen puede ser considerado como el petrólogo más relevante del Siglo XX, pues fue uno de los pioneros en el campo de la Petrología experimental.

Él recomendaba la solución de la petrología de campo a través de la aplicación de principios deducidos de diagramas de fases de los minerales petrogénicos. Condujo sus investigaciones desde un abordaje cuantitativo, absolutamente novedoso en un campo que hasta entonces se reducía a la observación y clasificación.

En el ya mencionado libro de 1928 «The Evolution of the Igneous Rocks», que es todavía libro de consulta en todo el mundo, Bowen estableció seis principios que hoy son indiscutibles:

  1. Reconocimiento de un conjunto de observaciones de campo que parezcan relacionarse entre sí.
  2. Simplificación de esas relaciones hasta poder diseñar un conjunto de experimentos que de algún modo repliquen las condiciones que se supone que existieron en la naturaleza.
  3. Ejecución de esos experimentos de manera tan incuestionable como sea posible.
  4. Aplicación de los principios derivados de los resultados experimentales, a situaciones específicas en el campo.
  5. Re-examen de las relaciones de campo, y prueba de las nuevas conclusiones a través de observaciones adicionales.
  6. Reiteración de la secuencia mencionada hasta aquí, hasta que se encuentren soluciones satisfactorias, asumiendo que cada nueva observación que implique una inconsistencia debe reiniciar todo el proceso.

Por supuesto, una teoría que tiene ya casi cien años, ha sido actualizada por otros científicos como Yoder lo hizo en 1979.

En definitiva, el legado de Bowen, más allá de su Serie de Reacción aún en uso, es la construcción de las bases experimentales y teóricas para la interpretación y documentación de la diversidad de las rocas ígneas y metamórficas.

¿Podemos agregar algo más a todo lo dicho?

Como nota adicional, la American Geophysical Union ha instituido el Premio Norman L. Bowen, que se otorga anualmente, a las contribuciones sobresalientes en los campos de la Vulcanología, Geoquímica y Petrología.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela.

P.S.: La imagen que ilustra el post es de este sitio.

Primeros pasos de la explotación de petróleo en Argentina

Hoy vamos a consignar datos de interés histórico, relacionados con nuestra historia y con nuestra ciencia.

¿Dónde se descubrió por primera vez petróleo en Argentina?

En la ciudad de Comodoro Rivadavia, en la Provincia de Chubut, que forma parte de la zona productiva de la Cuenca del Golfo de San Jorge y que comprende también la costa de la Provincia de Santa Cruz. Se trata de combustibles de edad desde jurásica hasta cretácico-terciarias.

¿Qué antecedentes reconoce ese descubrimiento?

En 1902 se había creado la «Comisión de Estudios de Napas de Aguas», que fue la simiente de la «División de Minas, Geología e Hidrogeología» que habría de crearse en Buenos Aires el 25 de junio de 1904. El primer jefe de esta nueva División fue el Ingeniero en Minas Enrique Martín Hermitte, quien en 1905, acuciado por la extrema sequía que venía soportando la zona árida de Comodoro Rivadavia, envió hacia allí un equipo de perforación, en 1905.

La precariedad de las maquinarias por entonces disponibles habín determinado que perforaciones anteriores se inetrrumpieran sin encontrar el líquido buscado. Otro tanto pasó con esta perforación de 1905, que se detuvo a los 170 m. No obstante, se decidió la compra de un equipo Fauck, de origen alemán, que llegó a Comodoro Rivadavia el 14 de diciembre de 1906.

¿Cómo se produjo el alumbramiento de petróleo?

A fines de noviembre de 1907, tras largos meses de arduos trabajos, se alcanzó la profundidad de 515 metros- 15 más que los garantizados por los fabricantes de la maquinaria- sin encontrar ni agua ni ninguna característica de interés geológico. Esto determinó una nueva suspensión de las tareas y un intercambio de telegramas con la oficina central en Buenos Aires.

Los especialistas Beghin y Fuchs ordenaron entonces hacer un último intento, poniendo el límite de las tareas en los 600m, siempre que las instalaciones lo resistieran.

Acercándose ya a los 540 m, comenzó a aparecer una sustancia aceitosa que daba claros indicios de la existencia de petróleo, que surgió finalmente el 13 de diciembre.

¿Cómo continuó la historia?

De resultas de conocerse este nuevo recurso, el 24 de diciembre de 1910, se creó la «Dirección General de Exploración del Petróleo de Comodoro Rivadavia».

En 1913, los Dres Keidel y Windhausen, guiados por sus conocimientos geológicos, sugirieron la exploración de la zona de Challacó en Neuquén, en cuyas proximidades se encontró el petróleo de Plaza Huincul, el 29 de octubre de 1918, dirimiéndose así la controversia planteada entre ellos y Mosconi, pero eso es tema de un futuro post.

Posteriores descubrimientos en el territorio nacional, condujeron a la creación de YPF (Yacimientos Petrolíferos Fiscales) el 16 de octubre de 1922, durante la presidencia de Marcelo Torcuato de Alvear.

¿Qué cuencas petrolíferas se reconocen Argentina?

Los yacimientos de petróleo productivos en Argentina pueden reunirse en las siguientes zona:

  • Los del norte, que se encuentran en las provincias de Salta, Jujuy y Formosa, y están relacionados a las cuencas paleozoica y cretácica. La más antigua es predominantemente gasífera, como los depósitos de Bolivia, y forma parte de las sierras subandinas. En los últimos años la producción va declinando en buena medida porque no se han explorado nuevas zonas. Los yacimientos cretácicos son más petrolíferos, como es el caso de Caimancito o Palmar Largo, que presentan reservorios carbonáticos y volcánicos a profundidades del orden de los 3.000m a 4.000m.
  • En la región centrooeste del país, se encuentra la cuenca cuyana, que incluye rocas de origen continental y edad triásica, portadoras de petróleo solamente en la provincia de Mendoza.
  • La cuenca neuquina comprende la parte más meridional de la provincia de Mendoza, además de Neuquén, Río Negro y La Pampa. Es de origen principalmente marino y de edad jurásico-cretácica. Puede considerársela como la de más potencialidad en el país por sus reservas tanto en yacimientos convencionales como no convencionales. Allí se encuentra la formación Vaca Muerta.
  • Cuenca del Golfo de San Jorge que incluye partes de las provincias de Chubut y norte de Santa Cruz, tal como dijimos ya más arriba. Hasta el presente es la principal cuenca productora de Argentina.
  • En parte compartida con Chile, se reconoce la cuenca austral, que involucra a las provincias de Santa Cruz y Tierra del Fuego, tanto en el continente como en el fondo marino. Produce gas y petróleo en rocas sedimentarias del Jurásico, Cretácico y Terciario.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.

P.S.: La imagen que ilustra el post es de este sitio.

Factores que afectan la evolución de los suelos

Ya hace bastante tiempo introduje el concepto de Pedología, y les conté cómo se van generando los suelos. Allí les dije que los perfiles resultantes podían ser muy diferentes en distintos lugares y situaciones, dependiendo de los factores intervinientes. Hoy haremos una introducción a esos factores, que alguna vez iremos analizando uno a uno con mayor detalle.

Les cuento de paso que son prácticamente los mismos factores que intervienen en la meteorización, de modo que estaremos prácticamente matando dos pájaros de un tiro.

¿A qué se refiere la fórmula que aparece en la imagen que ilustra la página?

La fórmula de Jenny que aparece en el dibujo, expresa un modelo evolutivo que considera al suelo como función de los factores condicionantes. Es la modificación, todavía vigente, de la primera fórmula, ideada por Vasili Dokucháyev, (considerado el padre de la Edafología, y de quien hará un post en algún momento) que sólo había desestimado la influencia del relieve, por la sencilla razón de que los suelos que él había observado eran los de la estepa rusa, de una gran uniformidad en lo que se refiere a la topografía.

Al pie de la fórmula, pueden ustedes leer el listado de los cinco factores mayores que condicionan la manera en que un suelo dado evoluciona en un lugar y época definidos. Los enumeramos detalladamente más abajo.

¿Cómo podríamos dividir los factores que inciden en la formación y evolución de los suelos?

Si bien podemos hacer una diferenciación como la que abordaremos en seguida, nunca debemos perder de vista que esas divisiones son puramente didácticas, ya que en la realidad todos los factores se interrelacionan de manera intrincada. Efectivamente, el suelo constituye un sistema complejo, en el que todos los factores se modifican entre sí, y conjuntamente al suelo que resulta de esas interacciones. En definitiva, todo lo que digamos será una esquematización muy simplificada del sistema real.

Así pues, hablaremos de factores activos y factores pasivos.

Entendemos como factores activos a aquéllos que tienen la capacidad de producir o introducir por sí mismos cambios en el sistema. Puede decirse que son capaces de impulsar las modificaciones, porque generan procesos. Tanto es así, que ocasionalmente, algunos de sus constituyentes pueden ser considerados como agentes, y no como simples factores condicionantes. (Recordemos que los roles en un sistema pueden ser intercambiados entre sí)

Son, en cambio, factores pasivos aquéllos que solamente reciben los efectos de la acción de los agentes, modificando su alcance y eventualmente dirección, pero sin generar procesos por sí mismos, aunque a veces provean la materia prima requerida para esos procesos.

¿Cuáles son los factores activos?

Los factores activos son:

  • La biota, que en el modelo de Jenny se menciona con la letra O por hacer alusión a organismos vivos. Es el factor que más fácilmente se reconoce como activo, ya que nadie ignora los efectos del pisoteo del ganado, o de la digestión de las lombrices, la excavación de algunos animales, o la presión de las raíces sobre los materiales originarios. Cualquiera de esos elementos de la biota podría individualmente ser considerado un agente.
  • El clima. Siendo el agua el vector organizador en el suelo, y siendo las precipitaciones parte del clima, no puede negarse que se trata de un factor activo. Pero también el viento, la temperatura, etc., son factores condicionantes que en procesos específicos pueden ser considerados como verdaderos agentes.

¿Cuáles de los factores son pasivos?

  • El material parental u originario que se ve afectado por los procesos, pero no los causa per se, salvo proveyendo los elementos químicos que reaccionarán en el sistema.
  • El relieve, que modifica la distribución del agua y su flujo, y el tiempo de permanencia en el espacio involucrado, pero no tiene acciones directas.
  • El tiempo, que define específicamente el grado de desarrollo que se puede haber alcanzado en cada unidad de suelo considerada.

¿Cómo se relacionan los factores entre sí?

No está de más repetir nuevamente que siendo el suelo un sistema complejo, los roles de agente y factor pueden  alternarse entre sí para cada constituyente, y se interrelacionan de maneras tan complejas como el sistema mismo. Pero de todo esto iremos conociendo más a medida que completemos los subsiguientes posts relacionados con el tema.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.

buscar en el blog
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Archivo