Archivo de la categoría ‘Geología para principiantes’
Avanzamos con la dinámica fluvial. Mecanismos del proceso erosivo. Parte 2.
El lunes pasado subí la primera parte de este tema, y por ende deberían comenzar por leer ese post antes de internarse en éste.
En ese momento respondí a las siguientes preguntas:
¿Cuáles son las herramientas de que se vale un río para modelar su curso?
¿Qué etapas comprende la erosión hídrica en sentido amplio?
A partir de esos puntos, hoy seguiremos con las preguntas que faltaban.
¿Cómo y de dónde obtiene el río su carga?
Puede decirse que hay básicamente dos alternativas: por un lado, existe una carga pasiva, en la que otros agentes o fenómenos, descargan material sólido o líquido en la corriente; y por otro lado, hay también una carga que resulta de la misma actividad del agua corriente.
Así pues, serían cargas pasivas las siguientes:
- Materiales resultantes de meteorización en las laderas: En estos casos, los materiales previamente desagregados por la meteorización pueden caer a los ríos por su propio peso, desplazándose por rodamiento ribera abajo, o pueden ser arrastrados por las lluvias que lavan las márgenes, por el viento, por animales, etc.
- Acción directa de la gravedad: esto se refiere a fenómenos de remoción en masa, que pueden proveer masivamente materiales desde los interfluvios,
- Material aportado por el viento: puede proceder de grandes distancias, cuando se trata de partículas muy finas que pueden permanecer en suspensión por mucho tiempo, y moverse hasta espacios muy lejanos a su fuente de origen. Los materiales más gruesos suelen proceder de las propias laderas. A veces, se trata de productos de contaminación atmosférica, en áreas fabriles o de mucho tránsito. En el río la descarga ocurre por floculación de las partículas, cuyo peso entonces llega a superar la resistencia del aire, o bien por ser lavadas por las precipitaciones.
- Material volcánico: si bien ese tipo de partículas pueden proceder de zonas alejadas, y ser llevadas por el viento hasta el río, entrando en ese caso en el apartado anterior, también puede suceder que las propias erupciones arrojen materiales a los ríos más próximos.
- Material en solución: aportado por aerosoles eólicos, o por meteorización química en las laderas
- Aportes varios: todos los efluentes que se arrojen directamente a los ríos, las cargas biológicas, como semillas o polen, deyecciones de animales que cruzan la corriente, el hielo glaciario que alimenta ríos, y que aporta gran cantidad de sedimentos, etc., todos generan carga para el transporte fluvial.
Finalmente, los materiales, ya sea en estado sólido o solubilizado, que constituyen la carga activamente adquirida por el propio río, son todos aquéllos que el agua disgrega o disuelve en las laderas a través de los mecanismos que mencionamos la semana pasada.
¿Cómo transporta el río sus materiales?
El material que llega al río es transportado en uno de tres niveles: como carga de fondo, carga de corriente y carga superficial, en cada uno de los casos lo hace de las siguientes maneras:
Como carga de fondo, los mecanismos de transporte- que por supuesto ocurren simultáneamente y complementándose unos a otros- son:
- Arrastre, empuje y saltación de piezas angulares: se conoce también como tracción y saltación y se refiere al proceso por el cual los fragmentos en tránsito se mueven sobre el fondo, o a muy pocos centímetros de él, y se van movilizando a favor de la pendiente, según una dinámica en que cada cuerpo es levantado por el impacto de la caída de otro sobre él. Los desplazamientos individuales se miden en pocos centímetros, pero son repetitivos y aditivos, con lo que hay un claro avance del conjunto de la carga de fondo.
- Rodamiento: cuando el desgaste por atrición va eliminando las aristas de los materiales transportados, éstos comienzan a rodar pendiente abajo, directamente sobre el lecho. Es propio de fragmentos esféricos y subesféricos, y su resultado típico es el canto rodado.
La carga principal, que afecta a todo el cuerpo del río, se mueve por:
- Suspensión: es el desplazamiento propio de los materiales finos y livianos, que ocurre aun cuando el río ha perdido casi toda su capacidad de carga, porque responde a la ley de Stokes que veremos en otro post. Se trata de material diseminado en todos los niveles de la corriente.
- Solución: es el método de transporte adecuado para los materiales solubles, y su movilización sigue, hasta que ocurra una reacción química que genere nuevos materiales, esta vez insolubles, o bien una floculación que responda a la ley de Stockes. También cambios físicos (temperatura, saturación, etc) pueden definir la depositación.
La carga superficial, que deja su porción superior expuesta al aire, se moviliza por:
- Flotación: mecanismo propio de materiales muy livianos y de amplia superficie que les da sustentación. Se da con hojas, troncos, partículas laminares como algunas micas, etc.
¿Cómo y cuándo deposita el río parte de su carga?
Tal vez debería hablarles de la velocidad de las corrientes antes de mencionar este punto, pero les prometo hacerlo en otro post para que éste no se haga eterno. Y digo esto, porque las dos causas principales por las cuales se deposita el material que es arrastrado por una corriente son: disminución de la velocidad y disminución del volumen de agua.
Ahora veamos por qué hay pérdida de velocidad de una corriente:
- Por cambios topográficos que disminuyen la pendiente del terreno.
- Por disminución del caudal de agua.
- Por cambios en la configuración del valle que generen más rozamiento, como es el caso de salir de un trecho encajonado hacia un amplio cauce donde aumenta en gran medida la fricción de fondo.
- Por obstrucciones, como rocas más duras que sobresalen de las paredes del valle.
- Por congelamiento del agua.
- Por desembocar en masas de aguas mayores y más tranquilas.
Las causas de disminución del volumen de agua corriente son:
- Cambios estacionales y fluctuaciones climáticas.
- Infltraciones en terrenos permeables.
- Evaporación.
- Extracción para diversos usos.
Ojalá les sirva esta información.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
Avanzamos con la dinámica fluvial. Mecanismos del proceso erosivo. Parte 1.

Hoy los invito a continuar temas que ya hemos comenzado a conocer, todos relacionados con el labrado del paisaje resultante de la acción de los ríos, o más generalizadamente del agua corriente encauzada. Lo que conocemos como dinámica fluvial.
Hemos visto ya temas como: cuencas, diseños de drenaje, torrentes y nacimiento de los ríos, tipos de flujos (laminar y turbulento), y el perfil transversal, con las partes que conforman un rÃo.
Les recomiendo leer los correspondientes posts antes de internarse en éste, que en realidad he de dividir en dos partes por su extensión. Hoy les entrego la primera, y el próximo lunes, la segunda.
Los temas de este post estarán referidos a los mecanismos de desgaste de que se vale un río para elaborar su cauce, y los modos de carga, transporte y depositación de materiales.
¿Cuáles son las herramientas de que se vale un río para modelar su curso?
En este caso, a lo que hacemos alusión es a la capacidad que tiene el agua de desgastar los materiales por sobre y entre los cuales corre.
Salvo en las grandes inundaciones, donde la competencia de la corriente es tal, que puede llegar a arrancar árboles o volúmenes importantes de sedimentos poco consolidados, la acción del agua corriente comienza en el arranque preferentemente partícula a partícula, y para ello, no es real que deba necesariamente contar con otras partículas que accionen como «limas». En efecto, aun el agua sin carga tiene capacidad de arranque y desgaste, como veremos en seguida.
Enumeremos los mecanismos de desgaste, entonces:
- Acción hidráulica. Es la que ejerce el agua sin otra herramienta que su propio peso, y la presión resultante de la velocidad de su movimiento y su caudal. En este caso su efecto es más notable en materiales ya desagregados, que son levantados por la corriente, y puestos por ende en movimiento. Un ejemplo muy claro de este tipo de acción es el hidrolavado de monumentos y edificios, donde simplemente se dirigen chorros de agua a presión para desalojar las partículas que contaminan y ensucian los muros, estatuas, etc.
- Corrasión. Es el desgaste mecánico del lecho y las márgenes del curso, por la fricción ejercida por las partículas que carga el agua. Cuanto mayor es el tamaño de los materiales transportados, mayor es su impacto sobre el terreno por el que fluye la corriente, y más rápido el desgaste físico.
- Corrosión. Que no debe confundirse con el mecanismo mencionado más arriba, puesto que se trata de una acción disolvente del agua, sobre los componentes solubles de los minerales y rocas por los que transcurre. En este caso se genera un transporte en solución.
- Atrición. Es el desgaste de los materiales que se encuentran en tránsito, debido a su propia interacción. Es decir que unos impactan y rozan a otros gastándolos y gastándose a su vez. Es un mecanismo importante pero no único en el redondeamiento de los materiales arrastrados.
¿Qué etapas comprende la erosión hídrica en sentido amplio?
Una vez más repito algo que dije muchas veces: en su sentido más amplio, la erosión implica todo el ciclo de rebajamiento del paisaje, mientras que la erosión en sentido estricto, o propiamente dicha sólo incluye el mecanismo de arranque de material.
Las etapas de la erosión l.s. (latu senso, o en sentido amplio) son tres:
- Arranque y carga de material, o erosión s.s., (stricto senso) o propiamente dicha.
- Transporte del material en la corriente.
- Depositación del material o sedimentación.
Hasta aquí la parte 1 del post. La semana que viene responderé a las siguientes preguntas:
¿Cómo y de dónde obtiene el río su carga?
¿Cómo transporta el río sus materiales?
¿Cómo y cuándo deposita el río parte de su carga?
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
Sigamos con el clima: la circulación oceánica.
Hoy continuaremos con los condicionantes del clima de los que hemos venido hablando durante varios posts.
Una vez comprendida la circulación atmosférica, es el turno de la circulación oceá¡nica, que tiene notable injerencia en las condiciones del clima regional y local.
Muchas de las cosas que veremos hoy se irán completando cuando hablemos de la dinámica marina, pero a los efectos de relacionar los océanos con el clima, esta síntesis de hoy es suficiente.
Recordemos, antes de avanzar más, que tanto la circulación atmosférica como la oceánica son dos sistemas complejos, que además se relacionan entre sí, aumentando la complejidad. Por tal motivo, en este primer encuentro sólo les haré un recuento somero de los rasgos más importantes de la circulación oceánica, pero no duden de que en otros posts podemos profundizar algo más sobre el tema.
¿Qué formas de circulación oceánica existen?
Básicamente hay un sistema de circulación superficial y otro profundo, ambos relacionados entre sí, y con otros muchos fenómenos no solamente climáticos sino también geológicos y geomorfológicos.
De las nociones más básicas de ambos hablaremos a continuación.
¿Cómo es el modelo general de circulación superficial, y a qué se debe?
El sistema de circulación oceánica superficial tiene mecanismos muy parecidos a los de la circulación atmosférica, de la que ya he hablado en otro post; pero se diferencia de ella, sobre todo por sus grados de libertad de movimiento. Mientras que en la atmósfera el aire circula sin límites físicos materiales, el agua del océano sólo puede moverse dentro de los márgenes sólidos que la contienen, es decir, fondo oceánico, y costas circundantes.
Por otra parte, en ambos casos hay una fuerte influencia de los movimientos rotacionales de la Tierra, y su consecuencia, la fuerza de Coriolis.
Las corrientes superficiales del océano tienen como principales impulsores a la convección térmica y los vientos.
Si bien todos los detalles de la generación de las corrientes se siguen estudiando y hay diversas opiniones al respecto, precisamente debido a la complejidad que mencioné más arriba, se pueden señalar algunos mecanismos básicos.
En principio, al girar el planeta hacia el este, la inercia de la masa hídrica, la retrasa un tanto, recostándola sobre el borde occidental de cada uno de los océanos, donde se inicia el mecanismo de compensación, que ayudado por los vientos dominantes crea las mayores corrientes superficiales. Ellas son la Corriente del Golfo en el Océano Atlántico, y la de Kuroshio en el Pacífico, que se mueven hacia el oriente.
Por supuesto, el mismo «apilamiento» de aguas en el occidente, crea un ligero déficit en el oriente de cada océano, que atrae «afloramientos» de aguas algo más profundas, que a la llegada de las que transportan las corrientes del Golfo y de Kuroshio, son desalojadas hacia el occidente, cerrando el ciclo más conspicuo.
Estas corrientes se mueven de modo dominantemente horizontal, y comprenden unas pocas decenas de metros de profundidad.
Por cierto, las dos corrientes mencionadas no son las únicas que existen, sino que localmente se reproducen ciclos de menor extensión pero con mecanismos no muy diferentes al mencionado.
¿Cómo es el modelo de circulación profunda, y a qué se debe?
Ya dije que las corrientes superficiales se mueven sobre todo con dirección horizontal, pero las corrientes profundas, en cambio, incluyen importantes componentes verticales, debido a que el mar está de alguna manera estratificado en cuanto a sus condiciones de temperatura y salinidad, y eso genera movimientos convectivos causantes de las corrientes que se denominan, precisamente por eso, termohalinas. (Termo= temperaura, halós= sales).
Así, las aguas más densas y frías que se generan en los polos, se mueven en profundidad hacia las zonas más cálidas, donde ascienden por su propio calentamiento, entre otras causas, y cierran el ciclo regresando hacia las mayores latitudes, como termohalinas cálidas y menos profundas.
¿Qué factores complican el modelo global?
Como ya dije varias veces, este modelo es una suuuuupersimplificación. En la realidad, hay que contar con el efecto de Coriolis que desvía las trayectorias teóricas; con las diferencias de salinidad que ocurren en las zonas próximas a las desembocaduras de los ríos; con los cambios estacionales que aportan precipitaciones que alteran la salinidad; con los efectos de contaminación natural y antrópica; y con muchos otros efectos que seguramente profundizaremos alguna vez.
En el caso de las corrientes superficiales, los cambios estacionales de los centros ciclónicos, que definen intensidades y trayectorias de los vientos, son también de gran importancia.
Y no podemos dejar de mencionar las oscilaciones como el Niño y la Niña, de los cuales ya les he hablado en otro post.
¿Qué efectos tienen sobre el clima y los fenómenos geológicos estas corrientes?
En principio, la llegada de corrientes cálidas a zonas frías, y viceversa, moderan los extremos climáticos en las zonas de influencia.
Pero por sobre todo, son vectores de gran importancia en la distribución planetaria de la radiación solar, que como les he explicado en otro post, genera temperaturas muy diferentes según su ángulo de incidencia. Se trata de verdaderas cintas transportadoras de calor.
Respecto a los fenómenos geológicos, en todos los fenómenos del ciclo exógeno, el clima es un factor condicionante, de modo que no hay que ser muy inteligente para ver la relación.
Y por otra parte, las corrientes marinas influyen en el cuarto balanceo, como les expliqué hace ya tiempo, con todo lo que eso significa para los procesos geomorfológicos y geológicos.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: Las imágenes que ilustran el post llevan incluidos los correspondeintes créditos.
La turmalina y sus propiedades.
Hoy vamos a conversar sobre una gema no demasiado cara, pese a su belleza y sus interesantes características: la turmalina.
¿Qué es la turmalina?
No se trata en realidad de un solo mineral en un sentido estricto, sino de lo que se llama el «grupo de la turmalina», ya que incluye ejemplares que se distinguen no sólo por su color, sino por algunos elementos en su composición química. No obstante, muchos autores hablan de esta gema como de un único mineral, con variedades que adquieren distintos nombres en función de su color.
Hay dos posibles orígenes para el nombre turmalina. Una opinión asume que procede de la palabra cingalesa «touramalli», que significa, «colores variados», y otra opinión le atribuye el origen a otro término cingalés, «turamali», que significa «imán de cenizas», que hace referencia a una característica que explicito más abajo.
- x = Ca2+, Na+, K+, O libre.
- y = Li+, Mg2+, Fe2+, Mn2+, Zn2+, Al3+, Cr3+, V3+, Fe3+, Ti4+, O libre;
- z = Mg2+, Al3+, Fe3+, Cr3+, V3+
- t = Si4+, Al3+, B3+
- b = B3+, O libre
- v = OH-, O2-
- w = OH–, F–, O2-.
¿Qué características tiene la turmalina?
Las dos cualidades más notables son la enorme variedad de colores, y el hecho de que el mismo cristal puede presentar varias tonalidades a lo largo de sus ejes cristalográficos principales. Otras propiedades poco comunes que exhibe son la piro y la piezoelectricidad, que le valieron el nombre «imán de cenizas» del que ya hablamos.
Su densidad varía entre 3,02 y 3,07 g/cm3 y su dureza va de 7 a 7,5 en la escala de Mohs. Tiene brillo vítreo, fractura concoidal, carece de clivaje, es frágil, y su raya no puede menos que ser blanca, porque es alocromática. Puede o no presentar diafanidad según las variedades.
La turmalina es estable a lo largo de un amplio rango de presión y temperatura, lo que la hace bastante resistente a la meteorización tanto física como química.
Estas propiedades le confieren utilidad en la fabricación de aparatos para la medición de presión, pero sigue siendo muy utilizada en joyería, sobre todo cuando los ejemplares son transparentes o translúcidos. También los ejemplares opacos se aprovechan para la ornamentación, pero normalmente se tallan y pulen en cabujón.
¿Qué minerales forman el grupo de la turmalina?
Como señalé ya antes, la turmalina incluye todo un grupo de minerales, según algunos autores: o bien, siendo uno solo, según otros, tiene muchas variedades, basadas en su composición, la cual se refleja en el color.
Así, la acroíta es incolora, como el nombre lo indica; el chorlo, que es el más abundante, es negro; la turmalina marrón o amarilla se llama dravita; la elbaíta tiene variedades o subvariedades (según como se considere a la turmalina) en tonos rojos (rubelita), azules (indigolita), rosas y verdes (verdelita). Esta última, cuando presenta un color verde muy intenso, parecido al de la esmeralda es la más valiosa.
¿Cuál es el origen de la turmalina?
¿Dónde hay yacimientos en el mundo?
La turmalina se encuentra en numerosos emplazamientos, entre los que se pueden mencionar yacimientos de Noruega, Finlandia, Australia, Estados Unidos, Brasil, Madagascar, y Bolivia.
¿Hay yacimientos de turmalina en Argentina?
El chorlo, o chorlita, como también se lo llama, aparece diseminado en forma de cristales perfectos y de buen tamaño en las pegmatitas presentes en las Sierras Pampeanas de Córdoba y San Luis.
En cuanto a las variedades coloreadas, están presentes en la mina «San Elías» del Departamente Chacabuco, en San Luis, donde hay elbaíta; y en el yacimiento de Papachacra en la provincia de Catamarca, donde se las encuentra asociadas a topacio, microclino y cuarzo ahumado. Allí se presentan con hábito prismático o acicular.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de este sitio.
Algunas nociones básicas sobre contaminación atmosférica.
Este tema tiene de por sí numerosas aristas, de modo que sólo voy a presentarles una muy apretada síntesis, basada sobre todo en el trabajo de Javier Alonso Rodríguez, de la Universidad de Oviedo, publicado en 1998. Sí hace mucho ya, pero me gustó la sistematización de los principales aspectos tratados, por lo cual sigo esos lineamientos.
¿Qué se entiende por contaminación atmosférica?
Se conoce como contaminación atmosférica a toda carga en el aire que la compone, de sustancias materiales y/o de energía en cantidades anómalas si se las compara con la composición química habitual. Pueden también ser las propiedades físicas las que resulten modificadas.
Esa contaminación puede o no afectar la calidad de vida en la región afectada, pues el concepto en sí sólo se refiere a las características de la composicón del aire, no a sus efectos directos o indirectos sobre la biosfera.
¿Qué tipo de contaminantes existen, según su origen?
Básicamente son dos las categorías existentes, según el origen o procedencia:
Son contaminantes naturales, aquéllos generados por la propia dinámica de la Tierra, como es el caso de los resultantes de la actividad volcánica, la acción del viento que levanta partículas desde el suelo, o que genera aerosles desde la superficie de los espejos de agua. También eventos aleatorios como los incendios forestales, no provocados por el hombre. cargan la atmósfera con gases y partículas.
Hay también una parte de la contaminación natural que es generada por los procesos metabólicos de los seres vivos, y por descomposición de la materia orgánica, sin intervención del hombre.
Toda la porción restante de la contaminación es de origen antrópico, es decir que se debe a acciones humanas exceptuadas las de su metabolismo. Aquí se incluyen los gases liberados como subproducto de la generación de energía a partir de combustibles fósiles, los materiales liberados en procesos industriales, o por los medios de transporte, principalmente.
Por regla general, los contaminantes antrópicos reconocen una fuente específica, y según cómo se distribuyen en el espacio se dividen en:
- Puntuales, fijos o estacionarios, como son las usinas o determinadas fábricas, curtiembres o destilerías.
- Lineales o móviles, como son las rutas, autopistas y caminos donde se concentran las emisiones de los vehículos en marcha.
- Zonales, compuestos o múltiples, que incluyen las ciudades, áreas industriales y puertos y aeropuertos.
Si bien la contaminación natural es mayor en volumen que la antrópica, las fuentes emisoras están muy repartidas en toda la superficie terrestre, lo que atempera sus efectos, debido precisamente a la mayor dispersión.
¿Qué ciclo cumplen los contaminantes en la atmósfera?
Una vez que los contaminantes se dispersan (los sólidos) o se difunden (los gaseosos) en la atmósfera comienzan un cierto ciclo evolutivo a lo largo del cual reaccionan entre sí, cambiando de composición, tamaño, estado físico, etcétera, según cuáles sean los elementos presentes, y las condiciones atmosféricas y meteorológicas.
Así resultan dos grupos de contaminantes:
Los contaminantes primarios, son los resultantes de emisiones directas desde los focos mencionados más arriba.
Los contaminantes secundarios, en cambio, se forman en la atmósfera a partir de combinaciones y reacciones entre los contaminantes primarios. Un ejemplo es la formación de lluvia ácida.
Con posterioridad, la atmósfera misma se depura, eliminando los contaminantes a través de procesos naturales. Así pues, los gases pueden condensarse, ser absorbidos por sustratos sólidos o resultar disueltos en los espejos de agua. Los sólidos tienden a coagularse, creciendo de tamaño hasta que su peso es tal, que terminan cayendo al suelo; o bien son lavados por las precipitaciones.
¿Cómo se clasifican los contaminantes según su tiempo de residencia en la atmósfera?
Los elementos contaminantes tienen un tiempo de residencia en la atmósfera que permite su clasificación en:
- De corta duración, que va desde horas hasta un día, y que incluyen básicamente a las partículas gruesas que sedimentan rápidamente.
- De media duración que implica alrededor de una semana, y que puede ser resultante de una contaminación regional, generalmente relacionada con vulcanismo o incendios forestales.
- De larga duración, que puede alcanzar a varios meses, y suelen ser las emisiones gaseosas, cuya eliminación es muy lenta.
La vida media de un contaminante depende de las características propias del mismo, de la capacidad difusora de la atmósfera y del ritmo de eliminación, además de la continuidad o no de las emisiones que lo colocan en la atmósfera.
¿Cómo se clasifican los contaminantes, según su estado físico?
Como no puede ser de otra manera, hay contaminantes sólidos, líquidos- que constituyen mayormente nieblas y aerosoles- y gaseosos.
¿Cómo se clasifican las partículas contaminantes según su tamaño?
Se habla de granos o gránulos en suspensión, cuando se trata de tamaños comprendidos entre 2 mm y 62 µm. Son por lo general visibles a ojo desnudo, insolubles y aportados por el viento, que los dispersa en la atmósfera, pero que al cesar su acción los deposita rápidamente por simple gravedad.
El término polvo o ceniza se aplica a partículas entre 62 y 1 µm. Sólo se ven con microscopio óptico, y son también mayoritariamente insolubles. Tienden a permanecer en la atmósfera por largos períodos, hasta que la lluvia los decanta, o bien se depositan según la velocidad que les define la ley de Stockes, que analizaremos en un post ad hoc.
Recordemos que la ceniza volcánica no resulta de combustión, pero en el caso de los contaminantes de la atmósfera, se incluyen también en el término «ceniza», las partículas que sí proceden de incendios forestales o de otras combustiones.
El término específico «hollín» se usa para núcleos de carbón al cual otros contaminantes se adhieren superficialmente. Lo que lo distingue de otras partículas es el color negro que tizna todas las superfices expuestas.
¿Qué puede decirse de los gases?
Entre los contaminantes gaseosos se encuentra el humo, que puede resultar de la combustión incompleta de combustibles fósiles como el carbón y el petróleo, o de la madera; puede ser humo industrial, debido a la volatilización y posterior condensación de vapores, que generalmente da origen a reacciones químicas de oxidación y libera compuestos potencialmente peligrosos para los seres vivos. Por último también puede producirse humo por procesos de descomposición de materia orgánica.
Existen también otros elementos gaseosos que resultan tanto de procesos orgánicos como inorgánicos, naturales o artificales, tales como el CO2, CO, SH2, MH3, etc, cuyos efectos pueden ser desde irritantes hasta letales según su tipo y concentración.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de este sitio.