Archivo de la categoría ‘Turismo geológico’

Disposición de residuos

Por allá por el año 2009, creo, hice mi primer viaje a Cartagena de Indias en Colombia, y aproveché para cruzar a la Isla de San Andrés, donde ya por entonces existía una profunda conciencia acerca de la necesidad de disponer de la basura sin destruir el ambiente. Esto suele ser común en las islas, donde el espacio disponible es claramente limitado. Nosotros, los argentinos, al contar con espacios más grandes, recién llevamos un par de años tratando de aprender algo tan básico.

Esta imagen que les presento se veía en el lobby del Hotel, y me parece interesante para compartir sobre todo con los que toman decisiones en los diversos municipios, que todavía no parecen haber advertido la magnitud del problema al que se enfrentan.

Una foto de un lugar inolvidable

Hoy les regalo, para su disfrute, una foto del Cañón del Colorado en USA, más específicamente de su borde norte.

Si quieren información científica sobre esta auténtica maravilla, pueden encontrarla en este post.

Un abrazo y hasta el próximo lunes, con un post científico. Graciela.

¿Cómo se forman los paisajes con grandes bolas de rocas?

LOS TERRONES 061

Para referencia de tamaño, el arbusto que se ve en primer plano es apenas más alto que un hombre de estatura normal.

Aquí voy a referirme a aquellas grandes bochas que se encuentran incluidas en el relieve circundante, no a las formas esferoidales que aparecen a veces como elementos depositados sobre un terreno dado, como si fueran relativamente independientes de él, fenómeno del que conversaremos en otro momento.

Los paisajes en los que el modelado in situ arroja un espacio de formas redondeadas de gran dimensión, generan un gran atractivo turístico e impacto visual. Vale la pena que veamos cómo se generan.

¿Dónde se ven estos modelados?

Debido a su génesis, son típicos de rocas cristalinas, del tipo de los granitos y granitoides, que tienden a ser afectados por diaclasamientos (o sea fracturas sin desplazamiento relativo de los bloques resultantes) de direcciones claramente definidas, normalmente según dos sistemas conjugados aproximadamente perpendiculares entre sí.

Sobre este tema de fracturas y diaclasas hablaremos en detalle en algún otro post, pero por hoy basta con recordar que las rocas propensas a generar relieves con grandes bolas, son las que como requisito previo tienen «grietas» que se cortan entre sí en «enrejados» que dibujan ángulos rectos.

En nuestras Sierras de Córdoba son comunes en las áreas de batolitos o stocks graníticos expuestos.

¿Cómo se los denomina científicamente?

El conjunto del paisaje se conoce como de «erosión en bolas», aunque el nombre más correcto sería de «meteorización en bolas», ya que ocurre in situ, faltando el transporte significativo de materiales, que es propio de los verdaderos procesos erosivos.

¿Por qué procesos se forman?

Como señalé más arriba, el requisito previo es la existencia de un sistema de diaclasas en enrejados perpendiculares. Esas fisuras definen volúmenes groseramente cúbicos en las rocas afectadas, y dan ingreso al agua, los organismos y demás agentes activos de la meteorización, tanto física como química, pero dominando esta última.

escanear0001granitobocha

Los detalles de lo dicho y lo que sigue a continuación se pueden observar bien en la figura adjunta, tomada del texto de Sawkins et al.

Ahora pensemos en que siempre las reacciones de meteorización química  son más intensas y veloces en las superficies de contacto entre los agentes de ataque y la roca atacada.

En este caso, vemos que cada cara de ese cubo teórico en que las diaclasas dividen al cuerpo litológico, es una superficie de ataque. En las aristas, en cambio, se ponen en contacto dos superficies de ataque, de modo que allí la meteorización se acelera.

Por último, en los vértices, son tres las superficies de ingreso de los agentes agresivos que se reúnen, con lo cual es todavía más rápida la descomposición. Esas diferencias en la velocidad del cambio se reflejan en la forma final casi esférica.

Y ¡voilá!, ya tenemos explicada nuestra incógnita.

¿Cómo evolucionan luego?

En muchos casos, las bolas graníticas tienden a ahuecarse, tal como vemos en la foto que ilustra el post, donde se observa una minicaverna natural, formada en uno de los bochones originales.

Esas oquedades se denominan taffoni, o tafoni, pero cabe agregar que no todos los tafonis responden al origen arriba descrito, sino que lo dicho es sólo una de las posibles gé©nesis. De otras causas posibles iremos conversando con el tiempo en el blog.

La palabra tafoni podría tener diversas interpretaciones etimológicas, ya sea haciéndola derivar del término griego taphos, que significa tumba; o del italiano de Sicilia, en el que taffoni, quiere decir ventana, y tafonare es perforar.

La razón por la cual se generan esas cavernas, que generalmente se ensanchan por su piso, es que allí precisamente, es donde permanece más tiempo la humedad, y ya sabemos que el agua es un vector muy activo en la evolución del paisaje.

Precisamente por esa razón, es que muchas veces, el desgaste en la base quita sustentación al «techo» del tafoni, que termina por desplomarse.

A lo largo de una meteorización continuada, y en tiempos geológicos, también las bolas terminan desapareciendo.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela.

P.S.: La imagen que ilustra el post es tomada de: SAWKINS,F.J; CHASE,C.; DARBY,D.G.; RAPP.G. Jr.1974. «The evolving earth» Mac Millan Publishing Co.

La foto es de la Provincia de Córdoba, camino a Traslasierra.

¿Qué son los Castillos de Algodón de Turquía?

Hoy vamos a conversar sobre una de las maravillas naturales que cuentan con protección de la UNESCO. Se trata de los Castillos de Algodón, así denominados por su aspecto tan sui generis.

¿Qué son y dónde quedan los Castillos de Algodón?

La expresión Castillos de Algodón es la traducción al español de la palabra turca Pamukkale, que es además el nombre con que se designa el lugar, constituido por una serie de terrazas que forman piscinas naturales de aguas termales que fueron descritas por primera vez por Marco Vitruvio Polión, el arquitecto de la Antigua Roma, en el S I a.C.

Ya por entones, esas aguas se consideraban terapéuticas, y se las señalaba como especialmente protegidas por Asclepio, el semidios de la medicina, su hija Hygieia -diosa de la salud, y Apolo, el dios de la medicina. Por ese motivo y su gran belleza visual, significaron un atractivo turístico por siglos, pero cuando las facilidades en el transporte aumentaron el número de las visitas, la sobreexplotación y la polución las pusieron en serio riesgo, hacia el final del siglo pasado. Fue entonces que la Unesco las declaró Patrimonio de la Humanidad en 1988, y desde entonces sólo se permiten los baños unas pocas horas al día y únicamente en zonas bien definidas.

Pamukkale está emplazada en la provincia de Denizli, dentro del valle del río Menderes, que discurre por el sudoeste de Turquía.

¿Cuáles son sus características generales?

Todo el conjunto se alza a una altura de 160 msnm, y se extiende por unos 2.700 metros. Su aspecto es semejante a un paisaje de aguas congeladas, o como lo indica el nombre, compuesto por nubes algodonosas.

En realidad el material dominante es el carbonato de calcio, constituyendo la roca que se conoce como travertino, que adquiere la forma de piletas en distintos niveles, y siendo un caso si no único, al menos sólo comparable a otro monumento natural de Hierve el agua, en Oaxaca (México).

La declaración de protección por la UNESCO incluye tanto a las piscinas como a las ruinas de la antigua ciudad helénica de Hierápolis, que data aproximadamente del año 180 a.C. La destrucción de esa ciudad se debió a uno de los tantos terremotos que caracterizan la dinámica geológica del lugar. Pese a sucesivas reconstrucciones, finalmente la ciudad sucumbió al sismo de 1354.

¿Cuál es su marco geológico y su geomorfología?

Pamukkale es un campo geotérmico activo, generado en el Cuaternario, que cubre un área de aproximadamente 10 km², en el que aflora un cuerpo travertínico. Ocupa una porción en el margen noreste de la Cuenca de Denizli, dentro de la Provincia Geológica conocida como Western Anatolian Extensional Province (Provincia Extensional de Anatolia occidental), que es una de las regiones sísmicamente más activas del mundo, con magnitudes Richter promedio de 6.

La dinámica extensional en Anatolia occidental estuvo activa desde el Oligoceno tardío, y produjo la exhumación de rocas metamórficas más antiguas, al tiempo que generaba un relieve de cuencas y sierras. Las primeras están surcadas por fallas normales todavía activas en su mayoría.

La cuenca de Denizli Basin tiene orientación WNW- ESE- y alrededor de 70 km de longitud y 50 de ancho, y fue rellenada por una sucesión continental de edad cuaternaria, que se depositó en ambientes aluviales y lacustres.

En el margen nororiental de la cuenca, específicamente donde se encuentra Pamukkale, yacen sucesiones mesozoicas dentro de un complejo apilamiento que sobreyace a la sucesión metamórfica del Paleozoico- Mesozoico, y que se conoce como Macizo Menderes.

Esa secuencia está separada de los sedimentos Cuaternarios continentales, por un sistema de fallas normales que buzan al SW. Ese sistema de fracturas es el que da paso a la circulación y surgencia hidrotermal, especialmente a través de la cresta de fisura denominada Äukurbaüy.

La cresta de Äukurbaüy es un rasgo morfogenético continuo de unos 360 m de longitud y 30 de ancho, con altura máxima de 10 m, y perfil asimétrico, en el que la pendiente norte es más abrupta y elevada que la sur. Eso dio el espacio protegido para la depositación del travertino, en varias unidades bien estratificadas que forman las sucesivas piletas.

¿Cómo se formaron?

El cuerpo travertínico es sintectónico y fuertemente controlado por las fallas, que se propagan dentro del cuerpo carbonático. Cada pulso de activación de las estructuras, permite nuevos ascensos de los fluidos que depositan luego su carga carbonatada en superficie.

En resumen, los carbonatos que generaron Pamukkale se vienen depositando desde hace al menos 400.000 años, por el ascenso de aguas termales con temperaturas que varían entre 35 y 56°C, que surgen desde un basamento rico en calcio y con permeabilidad aumentada por las fallas extensionales.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post vino en un power point por mail y desconozco su origen.

 

El día que se detuvieron las cataratas del Niágara

Hoy la elección del tema para mi post pasa por la efeméride. Efectivamente, el 29 de marzo de 1848, se recuerda un hecho curioso del que no se cuenta con registros históricos anteriores, y se trata del congelamiento completo de las cataratas del Niágara, fenómeno que duró treinta horas.

Vamos a recordar ese hecho, y usarlo de excusa para señalar algunas cosas más.

¿Dónde quedan y qué características tienen las cataratas del Niágara?

Las cataratas del Niágara – como casi siempre ocurre con las cataratas más imponentes del mundo- no están constituidas por una única caída, sino, en este caso, por al menos tres saltos mayores que detallaremos en seguida; y que se localizan sobre el río homónimo, en la región nororiental de América del Norte, entre Estados Unidos y Canadá. Se encuentran a unos 236 msnm y salvan un desnivel de  aproximadamente 64 metros.

Los saltos que mencionaba arriba son:

  • La Catarata Canadiense o Horseshoe Fall, en la Provincia de Ontario.
  • La Catarata Estadounidense, en el estado de Nueva York.
  • La Catarata Velo de Novia, de mucho menor tamaño.

Aunque no tienen una gran altura, sí  son las más caudalosas de América del Norte, ya que reúnen toda el agua de los Grandes Lagos. Son valiosas como sitio turístico y como fuente de energía.

¿Qué significa el término Niágara?

Toda la región estaba, a la llegada de los europeos, poblada por una tribu iroquesa, cuyo nombre era ongiara, pero a la que los conquistadores franceses llamaban «los mediadores», pues fueron con ellos muy amigables y facilitadores de su relación con otras tribus.

Según las leyendas de los ongiara, en la cueva que se encontraba tras la Horseshoe Fall, vivía HE-NO, el Dios del trueno, y en el idioma originario, la palabra Niágara significa «trueno de agua». Según esa misma leyenda, el jefe de la tribu concedió la mano de su hija Lelawala a un soldado invasor; pero ella prefirió desobedecerle e irse del poblado, para entregar su alma al Dios del trueno, con quien permanece desde entonces en la catarata.

¿Cuál es el origen geológico de los saltos de agua?

Como el propósito de hoy es simplemente recordar una efeméride, habrá otro post más completo al respecto en el futuro, pero hoy baste con decir que la catarata se originó hace alreddor de 10.000 años, de resultas del avance glaciario que cambió la topografía y el drenaje por completo, dejando como resultado los grandes lagos, cursos y saltos de agua que generaron los grandiosos paisajes que incluyen a las Cataratas que nos ocupan.

¿Además del que hoy se conmemora, hubo otros episodios en que se congelaron las cataratas del Niágara?

Si bien los fenómenos geológicos dejan sus propios registros, en la historia recopilada por el hombre sólo se reconocen tres episodios en que las Cataratas se congelaron de manera completa. Esos episodios son:

  • El 29 de marzo de 1848, tras una ola de frío en la que se alcanzaron valores mínimos de -35º C quedaron completamente congeladas. Para que eso ocurriera, fue necesario que primero un gran bloque de hielo la bloqueara permitiendo tan completo congelamiento.
  • La segunda ocasión documentada en la historia, fue en 1902 y hay registros de ella en la Biblioteca Pública de las Cataratas del Niágara.
  • El último congelamiento completo es del año 1936.

Hay también una imagen bastante famosa y conocida como «Cave of the winds in Winter Niagara Falls», que apareció en una postal de 1911, pero de la que no se sabe si fue de alguno de los dos episodios anteriores, o si también existió un fenómeno similar en ese año.

Existen otros episodios en que los saltos se congelaron, pero sólo parcialmente, como son los casos de 2007, de enero de 2014 y por fin del 23 de enero de 2019, en que tras el paso de la tormenta Harper, la temperatura descendió hasta -20°C.

¿Por qué se dice que no pueden volver a ocurrir esos congelamientos completos?

Como puede observarse, después de 1936 no volvieron a congelarse por completo, lo que en buena medida podría deberse a algún ligero cambio del microclima, inducido por la creación de la planta generadora de la Autoridad de Energía de Nueva York. Aunque esta aseveración no pasa de ser especulativa.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela.

P.S.: La imagen que ilustra el post es de este sitio.

buscar en el blog
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Archivo