Archivo de agosto de 2015
¿Cómo se habría formado la Tierra? Parte 2.
Este post es continuación del de la semana pasada, de modo que deberían empezar por leerlo antes de internarse en el de hoy.
Las preguntas ya respondidas en la parte 1 son:
¿Qué son las teorías cosmogónicas?
¿Cuándo y cómo comenzaron a formularse?
¿Qué es el momento angular?
A partir de ese punto retomamos las explicaciones.
¿Cuáles son las teorías dominantes en el momento actual?
En general hay dos tendencias diferentes: una que postula una fragmentación desde un cuerpo preexistente, y que no es en realidad la que más aceptación tiene, pero sobre la que volveré en algún momento en otro post, porque no deja de ser interesante; y la que apunta a una condensación de materiales anteriormente difusos, y cuya más completa formulación se conoce como «hipótesis nebular».
¿Qué plantea la hipótesis nebular?
Desde hace varias décadas, los astrónomos han reconocido la existencia de nubes de gas y polvo conocidas como nebulosas.
Estas nebulosas están dotadas de movimientos caóticos semejantes a los que habían descrito con anterioridad Von Weiszöcker y Kuiper, y tienen gran tamaño (unas millones de veces la dimensión de una estrella). Durante esta fase del desarrollo, las nebulosas se conocen como glóbulos de Bok y se observan como agrupamientos oscuros.
En respuesta a algún acontecimiento que perturbe su equilibrio, como puede ser por ejemplo la onda expansiva generada por una explosión supernova adyacente, los glóbulos de Bok tienden a sufrir un colapso gravitatorio, es decir a comprimirse rápidamente hasta alcanzar un tamaño poco mayor que el de una estrella,
Al disminuir su diámetro, los movimientos giratorios tienden a acelerarse (otra vez el ejemplo de los patinadores) y al aumentar la densidad del material debido a la contracción, la temperatura aumenta, hasta que en la zona central se inician las reacciones termonucleares propias de las estrellas, iniciándose la fase de nebulosa crisálida, en que ya hay una estrella joven (en fase T-Tauri) surgiendo en el sistema.
Los choques entre sí de las partículas propias de esta nebulosa, eliminan las trayectorias que no están en el plano de la máxima fuerza centrífuga, con lo que se van constituyendo las órbitas elípticas que ocupan los planetas que se van generando por acreción colisional.
Conviene aclarar que la acreción colisional ocurre cuando hay choques de baja energía, que imposibilitan el rebote o la destrucción, pero que por gravitación mantienen los materiales unidos en cuerpos cada vez mayores.
También fuerzas eléctricas intervienen para reunir las partículas en cuerpos de tamaño creciente, a los que se conoce como planetesimales y no son otra cosa que los planetas en su estado embrionario.
Es importante señalar que un sistema planetario como el Solar es estadísticamente poco probable, ya que requiere condiciones muy especiales para su generación, sobre todo en lo que se refiere a la velocidad de giro de la nebulosa original.
En efecto, una mayor velocidad podría elevar tanto la temperatura como para dar nacimiento a más de una estrella, las que generarían un campo gravitacional tan alto como para que todo el material de la nebulosa «cayera» en ellas, no quedando nada disponible para crear cuerpos orbitantes.
Una velocidad menor impediría el avance desde un glóbulo de Bok hasta una nebulosa crisálida.
También las cantidades de masa que se concentran centralmente definen en gran medida la evolución posterior del sistema. Demasiada masa aspiraría los materiales al interior, muy poca masa no retendría los planetas en órbita.
¿Qué postulaban Von Weiszöcker y Kuiper?
Como más arriba hice alusión a este antecedente, me parece interesante aclararlo un poco.
Von Weiszöcker y Kuiper imaginaron una nebulosa (según el modelo de la figura que ilustra el post) en turbulenta agitación, que formaba pequeñas células en movimiento en la zona central, y células cada vez más grandes a medida que aumentaba la distancia al sol. Dentro de cada una de estas células, el movimiento era violento e irregular, facilitando las colisiones que generan la acreción.
¿Cómo se resuelve el problema del momento angular en la teoría nebular?
A través de la siguiente explicación: si el gas de la estrella y el que lo rodea, están ionizados, se crea un intenso campo magnético. Como el gas ionizado no puede cruzar las líneas de fuerza de un campo magnético, y éstas giran con la estrella, el gas ionizado queda acoplado al astro, funcionando como una suerte de lastre que lo desacelera.
¿Por qué tiene la hipótesis nebular tanta adhesión?
Porque resulta perfectamente compatible con el «modelo secuencial de condensación química», que focaliza su atención, en tratar de explicar las variaciones en la composición actual de los planetas, partiendo desde una nebulosa relativamente homogénea.
Según esta hipótesis, los materiales que pudieron condensarse en las proximidades del Sol, (según el mecanismo ya explicado) donde las temperaturas son elevadas, fueron aquéllos de alto punto de fusión, tales como la mayoría de los metales. Por eso, Mercurio es el planeta más denso (5,4 Kg/m3).
Los compuestos más livianos, en cambio, se condensaron en los ambientes más fríos, bastante alejados del Sol. Los materiales de fácil evaporación, como el agua, amoníaco y metano, tendieron a alejarse de los planetas terrestres, concentrándose, en forma de hielo, especialmente en los satélites de los planetas gigantes.
Estos últimos, a su vez, con sus campos gravitatorios tan intensos, pudieron conservar casi todos sus componentes, manteniéndose muy semejantes a la nebulosa que les dio origen, y al propio Sol. Esto implica una constitución, mayoritariamente de hidrógeno y helio.
¿Cómo se explica la aparición de satélites en esta Teoría?
Según la hipótesis nebular, una vez que los planetesimales adquieren el tamaño que los justifica como planetas, sus campos gravitacionales generan a su alrededor nubes de materiales que pasan por un proceso de crecimiento por acreción colisional semejante a lo descrito para el Sol y los planetas, hasta dar lugar a cuerpos menores que los orbitan.
En algunos casos, los satélites pueden haber sido capturados con posterioridad, como cuerpos ya enteros, lo que explica sus órbitas no siempre coincidentes con el giro del planeta al que acompañan.
En el caso particular de la Luna, se considera que la acreción colisional ocurrió sobre material previamente arrancado a la Tierra por una colisión con un objeto casi tan grande como Marte, que arrojó al espacio algo semejante a esquirlas que se reunieron más tarde para formar el satélite, según el proceso mencionado. El arranque de material habría sido casi tan antiguo como la propia formación de la Tierra.
¿Qué es el Big Bang?
Lo cuento muy brevemente porque este post se ha extendido ya bastante, y porque puede llegar a ser tema de otro encuentro.
Según esta teoría, hace entre diez y quince mil millones años tuvo lugar la Gran Explosión o BIG BANG, cuya causa última aún hoy se desconoce, pero suele relacionarse con una oscilación cuántica del vacío.
Hasta entonces toda la materia y la energía que actualmente constituyen el universo, tanto como el propio espacio que hoy ocupan, estaban concentrados en un punto matemático sin ninguna dimensión, pero de muy alta densidad.
A partir del BIG BANG, el Universo inició una expansión que para algunos estudiosos ya no ha cesado. A medida que tal cosa ocurría, se producía un enfriamiento, y la radiación de esta «bola de fuego» cósmica se fue desplazando a través del espectro, desde los rayos X hacia la luz ultravioleta, pasando luego por los colores visibles, el infrarrojo y las regiones de radio.
Unos mil millones de años después de la Gran Explosión, la distribución de materia en el Universo se había hecho irregular, con empaquetamientos más densos en determinados lugares. Su gravedad atraía hacia esos puntos, cantidades sustanciales de H y He, que darían fundamentalmente lugar a las nebulosas y los glóbulos de Bok que dan nacimiento a las estrellas. Una de esas estrellas, en una de millones de galaxias, resultó ser el Sol.
¿Hay acuerdo total con relación a la expansión de Universo?
No, por cierto, pero ese tema es tan apasionante y extenso, que el debate mismo será tema de otro post.
Bibliografía.
Argüello, Graciela L. 2006. «Teorías Cosmogónicas» Cuadernillo didáctico Nº II, Capítulo 2. Para circulación interna en la U.N.R.C. Versión totalmente actualizada.7 páginas.
Baldo, E.2003. Desde el Big Bang al planeta Tierra. Apunte para la Cátedra de Geología General de la Universidad Nacional de Córdoba.
Bondi; Lynden; Bell; McCrea; Narlikar; Peace.1977. Cosmología, actualidas y perspectivas. Colección Labor.Barcelona.
Brandt, J.C. y Maran, S.P.1972. New Horizons in Astronomy W.H.Freeman y Cía. N.Y.
Ebbighausen,E.G. 1974 Astronomía Edit. Labor. Barcelona.
Press,F y Siever, R.1986. Earth. W.H. Freeman and Co. N.Y.
Sagan,C.1980. Cosmos Ed. Planeta.
Sawkins,F; Chase,C; Darby,D. y Repp ,G. 1974. The evolving Earth. Macmillan Publishing Co. Inc.N.Y -Collier Macmillan Londres.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
Un paisaje en pintura hiperrealista de Nancy Depew
Ésta es una hermosa pintura de la artista estadounidense Nancy Depew, en donde casi de modo fotográfico, se representa la dinámica fluvial. ¡Bellísimo!
Si quieren ampliar su disfrute, sigan el link en el nombre de la pintora y verán toda su obra en el sitio de donde tomé esta foto. Un abrazo. Graciela.
¿Cómo se habría formado la Tierra? Parte 1.
Probablemente una de las preguntas más recurrentes entre los humanos es ¿cómo se formó el mundo? Tanto que a lo largo de la historia ha generado cientos de mitos, leyendas y hasta religiones de amplia difusión.
Por eso hoy veremos- en lenguaje sencillo y al alcance de todos- qué es lo que la ciencia dice al respecto, haciendo la salvedad de que no hay acuerdos absolutos sobre la materia, y que además, por la complejidad del tema y su profundo interés, volveremos muchas veces a él.
Veamos pues:
¿Qué son las teorías cosmogónicas?
Existe una relativa confusión en el empleo de esta expresión, ya que etimológicamente procede de los vocablos griegos «kosmos»: mundo y «goneia»: generación, razón por la cual se puede interpretar en varios sentidos diferentes.
Para algunos, que piensan la palabra mundo como más inclusiva, las teorías cosmogónicas se referiían al origen del universo en su conjunto.
Para otros, podrían pensarse como circunscriptas a la explicación del origen de la Tierra, si ésta se entiende como el «mundo».
Pero en realidad, las principales teorías cosmogónicas han sido elaboradas con la intención de dar una explicación coherente respecto a los procesos que han dado origen al Sistema Solar, en particular, y partiendo siempre de cuerpos que se asumen como preexistentes.
¿Cuándo y cómo comenzaron a formularse?
Casi desde que el hombre aparece en la Tierra, se plantea preguntas acerca de todo lo que lo rodea, y el origen del espacio en el que vive no es una excepción.
Desde luego que en los albores de la historia y aun en la prehistoria, sus primeras interpretaciones son míticas, religiosas o mágicas, lo cual convierte a esas especulaciones en tema para futuros posts en las categorías Geología y Mitología, Geología y Religiones, y Geología y Mitos populares.
Pero no es de eso de lo que nos ocuparemos hoy.
Hoy buscaremos los antecedentes de las teorías cosmogónicas actualmente vigentes, sólo a partir de quienes especularon sobre bases racionales, aunque lo hayan hecho a la luz de conocimientos ya largamente superados.
Uno de los primeros antecedentes que se reconocen data de 1755, cuando el filósofo alemán Enmanuel Kant propuso una nube difusa de polvo y gas, que sometida a un movimiento de giro, se condensaba en algunos puntos que darían lugar a las diversas partes del sistema.
Poco más tarde, Laplace (1796), un matemático francés, retomó aquella idea y le dio una forma más explícita, según la cual el Sol fue en su origen un disco giratorio de mayor radio que la actual distancia desde este astro hasta el más remoto planeta del sistema. La energía gravitatoria habría determinado la contracción de este disco, y el exceso de energía así alcanzado, habría causado una aceleración de toda la masa.
Este principio físico se ilustra claramente con el ejemplo del patinador que gira más velozmente cuando concentra su masa, acercando los brazos y piernas al cuerpo. (Figura 1)

Figura 1. La mayor velocidad de giro se adquiere en el segundo ejemplo, al juntar los brazos y piernas, que en el primer caso están alejados del cuerpo, generando por un lado más rozamiento, y por otro, un efecto de energía gravitatoria disminuida, por la mayor distancia al centro del sistema.
Al ir produciéndose la contracción del gas, periódicamente se habrían ido desprendiendo las zonas externas del material en rotación, las cuales se reunirían más tarde para ir formando los respectivos planetas. Igual mecanismo habría dado origen a los satélites, a partir del material en condensación de cada planeta.
La razón fundamental por la cual esta teoría fue desechada, era la imposibilidad de explicar la actual distribución del momento angular, propiedad que explico más abajo en este post.
La objeción procede del hecho de que aunque el Sol suma alrededor del 99.9% de la masa total del Sistema, el 99% del momento angular está concentrado en los planetas mayores, como Júpiter y Saturno.
Para responder al principio físico, el Sol, que ha reunido la mayor parte de la masa, debería también concentrar la mayor parte del momento angular; en otras palabras, debería tener una velocidad angular mayor que la que efectivamente detenta, a menos que la masa hubiera ocupado desde el comienzo una posición central, con lo que no se habría hecho efectiva la condensación que se postula.
Esta teoría, debidamente corregida a lo largo del tiempo y el avance científico, dio nacimiento a la hipótesis nebular, hoy vigente.
¿Qué es el momento angular?
Momento angular: se define matemáticamente como el producto de una masa en rotación, su velocidad angular, y la distancia al eje de rotación. Todo el contexto puede ilustrarse sencillamente con el ejemplo de una bola de acero atada por una cuerda a una espiga central alrededor de la cual gira a una determinada velocidad. (Figura 2)
A partir de este punto las preguntas faltantes son las que ven más abajo y que responderé en la segunda parte del post, que subirá el próximo lunes.
¿Cuáles son las teorías dominantes en el momento actual?
¿Qué postulaban Von Weiszöcker y Kuiper?
¿Por qué tiene la hipótesis nebular tanta adhesión?
¿Cómo se explica la aparición de satélites en esta Teoría?
¿Qué es el Big Bang?
¿Hay acuerdo total con relación a la expansión de Universo?
Bibliografía.
Argüello, Graciela L. 2006. «Teorías Cosmogónicas» Cuadernillo didáctico Nº II, Capítulo 2. Para circulación interna en la U.N.R.C. Versión totalmente actualizada.7 páginas.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de este sitio. La figura 1 es de noticieros de internet y la 2 me pertenece.
Eating dirt, un fragmento traducido al castellano.
Como ya lo he dicho antes muchas veces, el libro Eating dirt de Charlotte Gill es uno de mis favoriteo, y siempre encuentro en él algo digno de ser compartido con ustedes, mis lectores.
La semana pasada subí el texto original y hoy se los traduzco al castellano. Disfrútenlo:
…Hoy solamente sigue existiendo un tercio de esta cubierta forestal original. Los bosques templados de hoja caduca fueron talados hace mucho tiempo. Queda solamente un puñado de grandes y antiguos bosques madereros en el mundo- los bosques boreales de Canadá y Rusia. En los trópicos permanecen tres áreas- los bosques pluviales del sudeste asiático en Indonesia, Borneo, y Papúa, Nueva Guinea. Los bosques primarios de África están contenidos mayormente dentro de la Cuenca del Congo. Por último hay selvas en el Amazonas, ecosistemas tan ricamente proveedores de vida, que se piensa que contienen la décima parte de todas las especies animales y vegetales del mundo.
Los árboles pueden ser el elemento más obvio de un bosque, pero son ampliamente superados por otros organismos. Las áreas de coníferas del Pacífico Noroccidental son el hogar de cientos de diferentes musgos y líquenes…
…la tierra está viva. Antes del calor del verano, las salamandras, sapos areneros, y lombrices de tierra están ocupados deslizándose dentro y fuera de sus cuevas…
Espero que lo hayan disfrutado y los espero el lunes. Graciela.
Nuevo descubrimiento: los árboles que delatan la existencia de oro
Hace ya un par de años, se dio a conocer una interesante noticia que podría revolucionar la historia de la explotación minera del oro.
¿De dónde procede la noticia?
De la Universidad de Perth, en Australia, cuyos científicos la liberaron a la comunidad geológica.
¿Qué dice la noticia?
En una zona de Kalgoorlie, donde se investigaban los bosques de eucaliptus, se descubrió que esos árboles concentran oro en sus hojas, procedente seguramente de los yacimientos que en la zona abundan.
¿Por qué sucede esto?
Kalgoorlie está en una zona muy próxima al Super Pit, una mina de oro de aproximadamente 3.6 km de largo por 1.6 de ancho y 512 m de profundidad, que se viene explotando desde fines del S XIX, cuando estalló la fiebre del oro en Australia.
Los árboles de la zona padecen sequías recurrentes, razón por la cual envían sus raíces muy profundamente a buscar agua subterránea, y así absorben con ella las partículas que se movilizan en suspensión, luego de atravesar los yacimientos circundantes.
Como el oro es tóxico para las plantas, lo concentran en las hojas, de las cuales pueden librarse de manera relativamente fácil.
¿Cuál es la importancia del hallazgo?
La cantidad que puede extraerse de las hojas es más que exigua, ya que se calcula que se requerirían las copas de 500 árboles para obtener una cantidad suficiente para hacer un anillo, pero no pasa por allí la importancia del descubrimiento, sino por la revolución que podría causar en los métodos exploratorios del metal precioso.
Efectivamente, analizar las hojas de los bosques de eucaliptus es mucho menos costoso y lesivo para el ambiente que cualquier otra técnica más tradicional, y ayudaría a descubrir yacimientos profundos en lugares insospechados.
Por otra parte, la capa de hojas secas podría incidir en la nueva generación de yacimientos supergénicos a largo plazo (plazo geológico es miles o cientos de miles de años).
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de este sitio, no conozco al autor.