Archivo de la categoría ‘Geología en la vida cotidiana’
¿Cómo se forma y evoluciona el paisaje?

En este post nos encontraremos con el contexto general que interrelaciona los procesos de modelado del paisaje entre sí. Es un intento de esquematizar uno de los sistemas más complejos que se puedan imaginar, de modo que habrá algunas simplificaciones absolutamente necesarias, pero que no debemos perder de vista que lo son.
En algunos casos ya he conversado con ustedes sobre determinados agentes y procesos, de modo que este post servirá de repaso.
En otros temas, de los que aún no hemos hablado, la función de este aporte será preparatoria, y servirá para darles el marco general a los procesos que más adelante vamos a discutir en detalle.
Encontré este diagrama de flujo entre los slides de antiguas presentaciones, y me pareció muy interesante subirlo al blog, aunque debo aclarar que fue tomado de una vieja lámina en cartulina que circulaba en la Escuela de Geología de Río Cuarto, e ignoro quién es el autor del original.
Por supuesto, hay modificaciones mías, sobre todo en el agregado de algunas flechas que me parecieron importantes para conectar fenómenos que en el original aparecían menos integrados.
¿Cómo interpretar este diagrama?
El diagrama está construido según las siguientes pautas:
- Mirando al pie de la figura ven una flecha que conecta todo y que representa el tiempo. Apunta en ambas direcciones porque los procesos pueden moverse de un lado al otro en ciclos casi siempre cerrados y bastante repetitivos.
- Las dos llaves horizontales indican las fuentes de energía involucradas. Arriba la energía externa, procedente del calor solar. Abajo la energía térmica del interior de la Tierra, de cuya producción ya hemos hablado antes.
- En el lado derecho y arriba se observa cómo los agentes externos causan los procesos exógenos que pueden generar un relieve primario. Un ejemplo podría ser una cubierta loéssica.
- Del mismo lado, y procediendo desde abajo, es decir del interior de la Tierra, se ve cómo los procesos endógenos conforman una litología y una estructura que definen también un relieve primario, como podría ser un afloramiento granítico, una colada volcánica, etc.
- Todo el sector izquierdo indica procesos y relaciones que modifican ese relieve primario generando sistemas estables o inestables que se relacionan también entre sí.
- Si volvemos a mirar el vector tiempo, con sus dos sentidos, el ciclo se cierra ya que cada uno de los lados puede correrse hacia el otro extremo en el transcurso de siglos, milenios o miles de milenios. Ocasionalmente también se suman algunos fenómenos casi instantáneos que no podemos ignorar. Ejemplos son erupciones, sismos, avalanchas, etc.
¿Qué ocurre a partir de los fenómenos endógenos?
Si bien se entiende que el propio diagrama ya lo expresa, repasemos que todos los fenómenos que tienen lugar en profundidad, de los que ya hemos analizado los que se generan en el magma, pero que también incluyen el metamorfismo y las transiciones, construyen las rocas y las estructuras, que según dije más arriba constituyen una forma posible de relieve primario.
¿Qué ocurre a partir de los fenómenos exógenos?
Los agentes exteriores: atmósfera, hidrósfera y biósfera interactúan (como señalan las flechitas que van y vienen) generando los procesos de meteorización y de erosión que producen nuevos materiales a los que denominamos sedimentarios, que son también un relieve primario.
Cualquiera sea el origen dominante del relieve primario, vemos que llegan a él flechas desde arriba y desde abajo, porque los dos subsistemas no están aislados uno de otro y se modifican y condicionan mutuamente.
¿Qué sucede con el relieve primario?
Ya sea de origen dominantemente endógeno, dominantemente exógeno, o lo que es más corriente, resultante de convergencia de causas, el relieve primario (nos corremos a la izquierda en el diagrama) se ve modelado por todos, casi todos o sólo algunos de los mismos agentes que antes le dieron origen. En determinadas circunstancias, la modificación llega a ser tan intensa que ya se generan formas secundarias con características propias muy diferentes del relieve primario.
Ese relieve, ya modificado, puede tener una relación estable o no con las condiciones del medio, tal como lo indican las flechas. Si ese sistema es estable y permanece como tal un tiempo suficiente, se instala en él la pedogénesis, del modo en que lo expliqué con detalle en el post sobre biostasia y rexistasia.
En algún tiempo, sin embargo, las propias modificaciones que los procesos inducen en el ambiente, o eventos aleatorios, o intervenciones antrópicas, o la suma de todo eso, pueden poner el sistema en condición inestable, con lo que se instala la morfogénesis. Como expliqué en el post que he linkeado más arriba, esas situaciones pueden convertirse la una en la otra.
Es decir un sistema estable pasa a inestable y viceversa, y donde reina la pedogénesis se marcha hacia la morfogénesis y viceversa.
¿Qué son las formas secundarias y cómo evolucionan?
Como bien sntetizan las flechas, las formas secundarias también pueden constituir sistemas estables o inestables, y en cada una de las situaciones, se reproduce la evolución que ya hemos explicitado en el caso del relieve primario, prístino o modelado.
Ojalá puedan seguir y comprender bien el diagrama de flujo, porque eso los preparará para una mirada más holística del paisaje,
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
Breve historia del Parque Nacional Yellowstone
Ya hace bastante tiempo les conté algunas generalidades acerca de ese extraordinario lugar que es el Parque Nacional Yellowstone, y les señalé sus coordenadas, de modo que daré por conocidos esos puntos, y me referiré específicamente ahora a su historia, ya que tuve la oportunidad de enterarme de ella a través de un video de la National Geographic, en la que su Director de Expediciones y docente en Ciencias de la Tierra, el multipremiado John Cochran, la relata con gran detalle.
Aquí les presento una versión libre de lo que aprendí en esa conferencia, dándole el crédito a quien le corresponde.
¿Quién fue el primero en reconocer la existencia de ese lugar tan majestuoso?
Obviamente no lo sabemos, porque naturalmente debe haber sido uno de los pobladores originarios, de los cuales no se guardan reportes de ese tipo. Somos nosotros, «la gente moderna», los que nos preocupamos por detalles como ése, 😀
No obstante, sí se sabe, por la cultura que aún se conserva, que las diversas tribus que se movían por la región, coincidieron todas en considerarla un territorio sagrado, debido a la existencia de geysers, barros humeantes, piletas termales y otras manifestaciones que consideraron sobrenaturales, y atribuyeron a espíritus y dioses.
¿Y quién fue el primer hombre blanco que lo recorrió?
Según las crónicas de la época, las primeras referencias a la zona de Yellowstone se deben a John Colter, (1775-1813) un aventurero probablemente analfabeto, razón por la cual la ortografía de su apellido se discute aún, entre estudiosos que a veces le llaman Colter, pero también Coulter o hasta Coalter.
Cualquiera sea el caso, este hombre, reconocido como excelente cazador y profundo conocedor de las prácticas de supervivencia en zonas todavía inexploradas, fue contratado como soldado raso, y con un sueldo de 5 dólares mensuales, para ser uno de los guías de la expedición encomendada por el Gobierno a Meriwether Lewis y William Clark, quienes debían remontar el Río Missouri hacia las nacientes, y en lo posible llegar hasta la costa Pacífica. Se trataba de una tarea de reconocimiento para establecer las potencialidades del área como futuro hábitat de la población blanca en aumento.
En el viaje de regreso, Colter y algunos audaces, entre los que se menciona a Pott, con quien comparte una jugosa hostoria, que tal vez algún día se me dé por relatarles, decidieron abandonar la expedición original, para aventurarse en áreas que no habían sido reconocidas en su transcurso, sobre todo con la intención de realizar cacerías y obtener pieles.
Sus compañeros fueron quedando por el camino, pero según lo que describe a su regreso, en los largos meses de su vagabundeo, habría recorrido casi toda la superficie de lo que es hoy el Parque Nacional. Lo que relata es obviamente extraordinario, al punto de que muchos lo consideraron como un mero invento, o el delirio de un tipo que había estado demasiado tiempo aislado del mundo civilizado.
¿Qué repercusiones tuvo su relato?
El relato de Colter incluía aguas calientes que saltaban verticalmente muchos metros, piletas de lodos burbujeantes y lagos que exhalaban vapores densos y a veces malolientes. Todo eso provocó que se extendiera la expresión burlona con que comenzaron a designar el área: «El Infierno de Colter».
Pero mucho después de su muerte, en el año 1871, el Capitán de Caballería Gustavus Doane (1840-1892) lideró otra expedición por los territorios del futuro parque, a los que describió como muy promisorios para la investigación de Ciencias como Geología, Botánica, Zoología y Mineralogía entre otras.
Según sus palabras (y según mi propia traducción), Yellowstone era «probablemente el mejor laboratorio provisto por la Naturaleza en toda la superficie del Globo».
¿Cómo siguió la historia del redescubrimiento de Yellowstone?
Luego de la exploración de Doane, en el mismo año 1871, Ferdinand Hayden (1829-1887) condujo la primera expedición científica, en compañía del fotógrafo William Henry Jackson (1843-1912) y el pintor Thomas Moran (1897- 1926), quienes por fin pudieron a través de sus respectivos artes despejar toda duda acerca de la existencia y valor de las maravillas que iban encontrando y estudiando.
Así fue que en 1872, el Presidente Ulysses S. Grant promulgó la legislación que reservaba el territorio, prohibiendo actividades que significaran modificaciones profundas, con lo cual Yellowstone se constituyó en el Primer Parque Nacional protegido, en el mundo.
¿Qué se puede agregar a esta historia?
Solamente un par de datos de color, que despejarán tal vez las dudas respecto a algunos toponímicos que encontrará el visitante en el parque.
Es bastante obvio después de lo que acaban de leer, que el Valle Hayden debe su nombre al director de la primera expedición científica; pero hay también dos montes de más de 300 m de altura dedicados a sendos ayudantes de Doane. El Monte Washburn es en homenaje a Henry Washburn; y el Langford, está dedicado a Natahaniel Langford.
Una última nota de color se relaciona con el nuevo nombre que se popularizó para el que hasta entonces llamaban «El Infierno de Colter». Sucede que en 1865, el escritor inglés Charles Dawson, más conocido por el pseudónimo Lewis Carrol, había publicado «Alicia en el país de las Maravillas» (Alice in Wonderland), con gran éxito de ventas. A partir de 1872, la gente comenzó a llamar al Parque con el sobrenombre de «Wonderland», muy merecido por cierto.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La foto que ilustra el post es de mi propia cosecha, y retrata un rasgo del parque del que hablaremos específicamente en otro post.
El sismo en Neuquén. Lunes 17 de Julio de 2023

Nuevamente debo salir al encuentro de un evento, con un post fuera de mi programación. En este caso se trata de un sismo acontecido en las proximidades de la ciudad de Neuquén, en la provincia homónima.
¿Dónde y cuándo se produjo el terremoto, y dónde se sintió?
En el mapa adjunto, el epicentro se encuentra marcado con una estrella amarilla, y sus coordenadas son: 38.191°S 70.373°W, esto es unos 14 km al sur de la localidad de Loncopué. Se sintió en Agnelo, Cutralcó, provincias vecinas, y también en Chile.
El hipocentro se ubica a unos 171,4 km bajo la superficie, por lo cual califica como sismo de intermedio a profundo.
El momento en que tuvo lugar fue a las 17 03:05:10 (hora UTC), del 17 de julio de 2023. En el horario argentino corresponden tres horas menos, es decir pasados unos cinco minutos de la medianoche.
¿Cuáles fueron sus características?
Alcanzó una magnitud Richter de 6,6 y llegó a los V grados de la escala de Mercali modificada, lo cual lo cataloga como «poco fuerte» o «algo fuerte» según las traducciones del original.
¿Cuál es el contexto regional?
Sobre este punto ya me he explayado muchas veces en otros eventos, ya que las responsables de este sismo son nuevamente las placas tectónicas de Nazca y la Sudamericana, y ya les he contado que la primera se hunde (subduce) bajo la segunda. Les recomiendo leer todos los links que vayan encontrando en este post porque no repetiré temas ya tratados en el blog.
En este caso, la profundidad del hipocentro permite suponer casi con seguridad que la deformación inicial tuvo lugar en el interior de la placa que se subduce, es decir la de Nazca.
¿Por qué no se reportaron daños de importancia?
Dos razones convergen: por un lado la profundidad misma de la liberación de energía hace que ésta se disipe en alguna medida antes de alcanzar la superficie, donde los daños son visibles para el ser humano.
Por el otro lado, ya he explicado muchas veces que los efectos se relacionan con lo que se conoce como Riesgo geológico, que les presenté en detalle en un post hace varios años, pero del cual les recuerdo que para la situación presente, la diferencia la hizo la menor vulnerabilidad del epicentro, que no está densamente poblado ni es de construcciones particularmente precarias.
¿Es real que hubo alertas tempranas lanzadas por Google en los celulares?
Esto es una novedad tecnológica interesante, ya que hay un sistema de Google que relaciona la vibración simultánea en múltiples celulares de un sitio determinado, con la ocurrencia de un sismo, por lo cual emite un mensaje de alerta temprana.
Pero no se trata ni de algo mágico ni de una predicción sísmica. Lo primero no merece ni consideración, y lo segundo es un gran proyecto que lleva muchos años refinando los geoindicadores que permiten suponer que se aproxima en evento, aunque todavía no puede estimarse fecha ni hora de manera confiable. Sobre ese tema también he escrito varios posts para ustedes, que pueden empezar a leer aquí.
Pero en este caso, que no es una predicción, lo que se emite es una alerta temprana, es decir un aviso, cuando el fenómeno ya está en curso, pero no alcanza su pico de intensidad todavía.
Esto es así porque las diversas ondas sísmicas se desplazan con distintas velocidades, y son las p o longitudinales las que primero alcanzan los receptores (en este caso podrían considerarse receptores todos los habitantes de la zona afectada), pero como se transmiten por el interior de la Tierra, su energía llega muy atenuada. Las ondas que provocan los daños son las que se transmiten superficialmente, pero tienen un retraso para llegar hasta la superficie antes de moverse por ella. De esa manera, las primeras ondas (las p) son las que disparan la alerta, antes de la llegada de las destructivas.
La diferencia según los casos puede ser de algunos segundos hasta tal vez un par de minutos, según la profundidad del hipocentro. Eso da el tiempo necesario para tomar decisiones que pueden hacer toda la diferencia, como por ejemplo alejarse de estructuras inestables o voladizas que pueden caer sobre las personasno ingresar a un ascensor que puede ser una trampa en un sismo, o tomar recaudos como interrumpir la entrada de gas y electricidad a una casa. Muchas de las medidas a tomar en esos casos ya fueron también explicadas por mí en otros posts.
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela. P.S.: La imagen que ilustra el post es de la página del Servicio Geológico de Estado Unidos.
Nociones básicas sobre la atmósfera. Parte 3

Este post es continuación de los dos de las semanas inmediatamente pasadas, de modo que deberían empezar por leerlos antes de internarse en el de hoy. En el primero de ellos respondí las siguientes preguntas:
¿Qué es la atmósfera y qué espacio ocupa?
¿Qué funciones cumple?
En la parte 2, respondí a las preguntas:
¿Cuál es su composición actual?
¿Fue esa composición diferente en el pasado?
Desde allí retomamos hoy nuestra conversación, respondiendo a las preguntas faltantes:
¿Cómo se divide la atmósfera?
En principio, una apretada síntesis se observa claramente en el cuadro que ilustra el post, pero de cada una de esas capas hay bastante para decir, y límites para agregar, y ahora vamos a ello.
Desde abajo hacia arriba componen la atmósfera las siguientes capas:
- Tropósfera: se extiende desde la superficie de la Tierra hasta una altura máxima de 18 km en el ecuador, pero con un límite a los 9 sobre los polos. Su composición es la ya mencionada en la primera parte de este tema, pero por su proximidad con la hidrósfera y con la corteza, hay hasta los 500 m de altura, un contenido aumentado de vapor de agua y de polvo en suspensión. Presenta una activa circulación del aire tanto en sentido vertical como horizontal, y un descenso paulatino de la temperatura con la altura, según un gradiente de aproximadamente un grado cada 150 m. Pasa hacia la capa siguiente a través de la zona transicional conocida como tropopausa, en la cual la temperatura llega a descender hasta -70° C,
- Estratósfera: notablemente, aquí vuelve a aumentar la temperatura progresivamente hasta unos 15° C en la zona transicional que la separa de la mesósfera, conocida como estratopausa, y que se extiende en las proximidades de los 50 a 60 km. En la estratósfera la circulación horizontal es prácticamente la única que tiene lugar, con vientos que pueden alcanzar los 200 km/h. De gran importancia en ella es la presencia de la capa de ozono, (ozonósfera) resultante de la disociación del oxígeno, y que actúa como pantalla protectora de las radiaciones peligrosas para la vida terrestre.
- Mesósfera: ocupa el espacio entre los 50 o 60 (según dónde se mida) y los 80 km de altura. Vuelve a disminuir la temperatura, hasta alcanzar en su zona de límite superior transicional, la mesopausa, los -124°C.
- Termósfera: entre los 80 y los 450 km de altura, se conoce también como ionósfera, ya que allí las radiaciones solares de alta energía liberan electrones de los constituyentes atmosféricos, que resultan por ende ionizados, y elevan la temperatura de esta capa hasta cerca de los 1.000° C. Es aquí donde tienen lugar las auroras boreales (de las que ahora que lo pienso debo hacer un post en algún momento).
- Exósfera: que como señalé al responder la pregunta respecto al espesor de la atmósfera, para algunos autores ya es parte del espacio exterior, y de allí le viene el nombre. No obstante, ocupando el espacio entre los 450 y los 900 Km, muchos preferimos incluirla en la atmósfera por su importante función como filtro de radiaciones cósmicas y por ser allí donde son interceptados y destruidos (al menos en parte) por fricción, los meteoritos entrantes.
- Magnetósfera: que se extiende desde los 900 km hasta prácticamente su desaparición por enrarecimiento del aire. Allí se encuentran las bandas de radiación llamadas cinturones de Van Allen.
¿Qué puede agregarse?
Más allá de las funciones que fueron mencionadas en la primera parte de este post, publicada el lunes pasado, tienen lugar en la atmósfera, ocasionalmente, eventos con consecuencias de gran importancia, a veces fatales, como por ejemplo la inversion térmica de 1952, y otras situaciones que serán motivo de posts individuales en un futuro cercano. Les aseguro que son muy interesantes,
Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.