Entradas con la etiqueta ‘México’

El sismo de México del 19 de Septiembre de 2017

mexicosismoNuevamente, una agitación telúrica me convoca para explicar algunos de sus aspectos. Como nunca quiero repetir cosas ya expresadas en este mismo blog, les sugiero que lean, antes de entrar en este post, tanto como puedan de cuanto vengo subiendo bajo la etiqueta Sismos. Si eso les parece mucho, sigan al menos los links que incluyo en el texto, porque de lo contrario se les escaparán algunos conceptos que yo ya doy por conocidos.

¿Cuándo, cómo y dónde sucedió el evento sísmico?

El pasado martes 19 de Septiembre, a las 13 horas y 14 minutos de la hora local, y sólo  unos diez días después del terremoto -de mayor magnitud- de Chiapas, se produjo un  nuevo  terremoto, con magnitud 7,1 de la escala de Richter.

Fue además un sismo bastante prolongado, ya que alcanzó al menos un minuto de duración.

El epicentro se situó cercano al límite entre Morelos y Puebla, más específicamente, 12 kilómetros al sureste de Axochiapan, correspondiendo a las coordenadas 18,584° de latitud N y 98,399° de longitud W.

El hipocentro tuvo una profundidad de entre 51 km según el informe del USGS, y 57 km, según la estimación del Servicio Sismológico Nacional de México.

Al menos son 224 las víctimas humanas fatales, aunque con el correr de las horas la cifra  podría incrementarse.

El sismo se produjo en coincidencia con la fecha en que 32 años atrás, se producía la peor tragedia del país: el terremoto que provocó cerca de 10.000 muertos en 1985.

¿Fue algo  absolutamente inesperado?

De ninguna manera, forma parte del reacomodamiento de placas -que como yo misma les anuncié hace 10 días en otro post– debía producirse. Y fue también, como allí les dije, de menor magnitud. Recuerden que tratándose de una escala logarítmica, ese ligero cambio entre los grados 7 y 8, es sólo aparente, ya que en la realidad la energía liberada es muchísimo menor.

¿En qué se parece y en qué se diferencia del acontecido hace diez días?

El contexto geológico en escala megascópica es el mismo que les expliqué en el anterior terremoto, de modo que no voy a repetirlo ahora, sólo les recuerdo que se relaciona con el contacto entre las placas de Cocos y Norteamericana.

En cuanto a las diferencias, las más significativas son los efectos en materia de daños, que analizaré más abajo, y la característica dominante del movimiento que fue trepidatorio en esta oportunidad.

¿Qué significa que fue “trepidatorio?

Éste es el momento exacto en que deberían ir a leer mi post sobre los diferentes tipos de ondas sísmicas, ya que todas las explicaciones que siguen se basan sobre esos conceptos.

En el post que les linkeé más arriba, les expliqué que las ondas superficiales son las responsables de los daños de los terremotos, puesto que las ondas internas o profundas disipan gran parte de su energía lejos del hábitat humano, a gran distancia de la superficie.

Por ende, nos centraremos ahora en las ondas superficiales, aunque un poco más abajo hablaremos también de las ondas internas, por razones muy distintas.

Pero vayamos a lo nuestro:

Recordemos que en todos los tipos de ondas, las partículas individuales no se desplazan recorriendo distancias, sino que solamente vibran en su lugar, transmitiendo su energía a las adyacentes, de modo que es la energía y no la materia, la que se moviliza por cientos o miles de kilómetros.

Por otro lado, recordemos que existen diversos tipos de ondas superficiales, uno de los cuales es el que conocemos como Ondas Rayleigh.

En este tipo de ondas, las partículas vibran en un movimiento elíptico y retrógrado, casi como si dieran “vueltas de carnero hacia atrás” en su lugar, lo que se expresa en sacudidas pronunciadamente verticales en el mismo sitio. Eso es lo que se entiende como un movimiento trepidatorio, y es poco habitual, siendo más común que la mayor parte de la energía se manifieste como desplazamientos oscilatorios.

La disipación de la energía Rayleigh es relativamente rápida, de modo que a gran distancia del epicentro, los terrenos sufren casi en su totalidad movimientos horizontales y oscilatorios, mientras que en zonas muy próximas al centro de ruptura, aumenta la componente trepidacional. También la distribución de la energía que se transmite de una u otra forma depende de las condiciones propias del terreno atravesado.

¿Por qué hubo tantos daños?

Ahora necesitan leer el post en que les explico el riesgo geológico, para entender esto que sigue.

Puede uno preguntarse cómo es que hubo en este sismo más daños que en el de hace diez días, que fue, sin embargo de mayor magnitud.

Pues por la convergencia de tres causas principales:

  • Susceptibilidad del territorio afectado. Se entiende como tal a la fragilidad natural del área de afectación. En este caso, debe recordarse que México está construida principalmente sobre un material que ha rellenado un antiguo lago, y tanto los suelos blandos como los de relleno, tienden a magnificar los efectos sísmicos, con mayores asentamientos, deslizamientos y hasta posible licuefacción. (Situación en que el suelo supera su límite plástico- líquido, y fluye como si no fuera sólido).
  • Vulnerabilidad, ésta es la fragilidad artificial, inducida por las construcciones, la carga estructural y poblacional, la educación y las estrategias de prevención, etc. México está asentada en un terreno muy susceptible, y es además una de las ciudades más densamente pobladas del mundo, y conserva todavía muchas construcciones antiguas, que no cumplen el protocolo de la arquitectura sismorresistente. Un combo realmente alarmante.
  • Ineficacia  ocasional del sistema de alarma temprana.

¿Por qué fue inefectiva la alarma temprana?

Volvamos a las ondas. Dijimos ya que hay ondas internas- relativamente inocuas- y superficiales, que son las que causan los peores daños.

Afortunadamente, las primeras ondas en llegar a los detectores son las que se propagan en profundidad, más específicamente las ondas longitudinales o p, así llamadas precisamente porque son las “prima” o primeras en llegar.

El retraso de las superficiales respecto a las p, aumenta con la distancia al epicentro, de modo que al detectarse las primeras, puede haber entre 50 y 70 segundos, lo que da tiempo para alejarse de estructuras colgantes, apagar cocinas, desconectar luces, y/o refugiarse bajo una protección relativamente segura. No es mucho, pero a veces hace toda la diferencia.

En este caso, fue tan escasa la distancia entre el epicentro y el área poblada, que el tiempo de detección entre las primeras ondas y las destructivas fue extremadamente escaso. No hay responsabilidad humana en esto, pero el efecto fue devastador.

¿Y ahora qué sigue?

Sigue lo de siempre, un tiempo de agitación en toda la región, hasta que las placas encuentren su nueva situación de equilibrio. Pero esto ya lo he dicho en el post que les mandé a leer, de modo que prefiero enfocarme en otra cosa: los volcanes.

Toda esa región es de intensa actividad volcánica, y las placas que se han movido podrían cambiar la configuración de los caminos profundos de ascenso del magma.

En unos casos podrían sellarlos, desactivando al menos temporalmente centros activos, lo cual no es preocupante; pero en otros podrían abrir espacios para el ascenso magmático, generando erupciones, y es a eso a lo que debe prestarse especial atención ahora. Y no sólo en México sino también en países vecinos.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela.

P.S.: La imagen que ilustra el post es del Servicio Geológico de Estados Unidos.

Ei terremoto en México. Septiembre de 2017.

sismo mexico

Una vez más debo apartarme de mi programación habitual, puesto que ha ocurrido un evento sísmico que no puedo menos que tratar de explicar de manera sencilla.

¿Dónde, cuándo y cómo tuvo lugar el terremoto?

El sismo tuvo lugar a las 23h 39 minutos de la hora de México, el día 7 de septiembre de 2017,  en las proximidades de la localidad de Chiapas, y debido a su magnitud, se sintió también en todo el resto del país e inclusive en Guatemala.

Se trató de un movimiento de profundidad intermedia (58 km) y magnitud 8,2 de la escala Richter. Su epicentro se ubicó a 109 kilómetros al suroeste de El Palmarcito, y a 228 kilómetros al suroeste de Tuxtla, Gutiérrez.

Se han registrado desde entonces y hasta el momento en que escribo este post, hasta 132 réplicas, nueve de las cuales superaron los 5 grados Richter.

Se ha observado también un aumento en el nivel del mar del orden de un metro, y se considera el sismo de mayor magnitud que se haya registrado en los últimos cien años en México.

El recuento de víctimas humanas estaría ya superando la treintena.

¿Por qué se habla de efectos luminosos?

Se trata de luces que se observaron antes, durante y después del evento, en la baja atmósfera. Ya desde 2001  se tiene una explicación para este fenómeno que se viene describiendo desde hace varios siglos, pero que por la imposibilidad de registrarlo en esa época, fue atribuido a mitos, leyendas, y hasta a sugestión.

Hoy en día se asume que estas luces son causadas por ciertas propiedades eléctricas de las rocas, que se ven afectadas por la tensión mecánica que tiene lugar durante esos movimientos repentinos de las placas tectónicas que se manifiestan como terremotos.

Durante la última década, los especialistas están intentando analizar estadísticamente la ocurrencia de estos fenómenos, pues prometen ser  una manera más de predecir los movimientos telúricos. Esto es por el momento motivo de investigación, ya que se requiere sistematizar una información a la que se le prestó poca atención hasta no hace mucho. Adicionalmente, otros fenómenos atmosféricos pueden enmascarar su verdadero significado, de modo que es un campo promisorio, pero todavía no se incluye oficialmente entre los métodos de detección precoz de sismos.

¿A qué se debió el sismo?

Según la información preliminar, que seguramente los geólogos de la zona podrán completar un poco más en los próximos días, el sismo de  México, occurrió como resultado de un fallamiento normal o directo, de profundidad intermedia.

Podría deberse tanto a un deslizamiento de bajo buzamiento hacia el sudoeste, o bien a un desplazamiento de alto ángulo a lo largo de una falla de rumbo NW-SE.

Cualquiera sea el movimiento dominante, la causa última es la subducción de la placa de Cocos bajo la Noreamericana, que ocurre con velocidad aproximada de 76 mm por año.

No obstante, cabe consignar que debido a las características de ubicación, profundidad y mecanismo de fallamiento normal, este sismo sería más asimilable a un fenómeno de intraplaca que a los de la zona de contacto propiamente dicho, entre placas adyacentes.

¿Por qué es México un  territorio tan altamanente sísmico?

Durante el siglo pasado, la región que hoy nos ocupa ha sobrellevado al menos otros siete terremotos de magnitud superior a 7 en la escala Richter, pero no todos se deben a la subducción, ya que en México, a lo largo de su costa oeste, ocurren interacciones de al menos cinco placas de distintos tamaños, pero igulamente inquietas.

Ya con motivo del sismo de 2010, yo les expliqué que ese acontecimiento tenía un origen que no se relacionaba con fenómenos de subducción, sino de otra clase de contacto, en el que las placas se   desplazan lateralmente en lo que los geólogos llamamos un límite transformante.

Un ejemplo de este tipo de límite es el famoso sistema de fallas de rumbo de San Andrés.

Así pues, comprendemos por qué este lugar del planeta es uno de los más activos sísmicamente, porque cuando una placa no se mueve bruscamente, otra lo hace.

¿Por qué hay alertas de tsunami?

Porque la placa de Cocos es una placa oceánica, y al estar buscando una nueva posición de equilibrio, puede generar maremotos o tsunamis.

No obstante, debido a la vigilancia permanente del Centro de Alerta de Tsunamis del Pacífico, y otras instituciones, nada debería ocurrir sin que se tomen las previsiones del caso, y sólo cabe recordar a la población que seguir las indicaciones de las autoridades es su mejor opción.

¿Qué cabe esperar ahora?

Debo repetir una vez más, como en tantos otros posts, que seguramente la zona estará temblando algún tiempo, porque todo el rompecabezas de las placas cercanas debe reajustar su posición, en un nuevo estado de equilibrio.

No obstante, como siempre les digo, una vez  que se ha roto el silencio sísmico, la mayor parte de la energía acumulada ya ha sido liberada, de modo que lo que viene debería ser de magnitud siempre decreciente, al menos en teoría.

Las zonas aledañas a las placas que se contactan con la de Cocos, sobre  los bordes Pacíficos, seguramente serán las que más deban acomodarse, y tendrían las mayores probabilidades de ocurrencia de otros eventos.

Hay también un efecto posible,  del que no he hablado otras veces porque todavía no les había contado algo que les permitiría comprenderlo mejor.

Como ahora ya les he subido el post que necesitan leer para entender lo que sigue, voy a comentarles este posible efecto a largo plazo. Pero vayan a leer este post primero, así nos entendemos mejor.

Si ya leyeron el post que les indiqué arriba, saben que uno de los movimientos planetarios es el Período de Chandler, que se conoce desde el S XlX y que incluye desplazamientos del eje terrestre de no más de 9 metros, en respuesta a los movimientos de grandes masas (como las placas tectónicas) sobre su superficie.

En conclusión, este sismo de gran magnitud podría haber ya provocado algún cambio ligero en la posición del eje, lo cual a largo plazo también podría incidir en algún grado, en el cambio climático que forma parte natural de la historia del planeta.

Un abrazo y hasta el lunes, Graciela

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela.

P.S.: La imagen que ilustra el post es de este sitio. Corresponde al Servicio Geológico de Estados Unidos.

¿Dónde estudiar Geología en México?

Así como hace algún tiempo subí un post con el listado de las universidades argentinas, chilenas, uruguayas, bolivianas, y de centroamérica donde se puede estudiar Geología, hoy les presento el resultado de bucear en la red buscando la misma información para México.

Repito una vez más que no estoy incluyendo ninguna carrera con cierta afinidad, sino estrictamente las que otorgan el título específico de Geólogo, con todas las incumbencias del caso.

Y éstas son las mencionadas Universidades:

– Universidad Nacional Autónoma de México: Ingeniería Geológica. Instituto de Geología de la UNAM.
– Instituto Nacional Politécnico: Ingeniería Geológica.
– Universidad Autónoma Zacatecas: Ingeniería Geológica.
– Universidad de Sonora: Licenciatura en Geología.
– Universidad Autónoma de Nuevo León: Ingeniero Geólogo (www.uanl.mx)
Universidad Autónoma de San Luis Potosí: Ingeniería Geológica.
Universidad Autónoma del Estado de Hidalgo: Ingeniería en Geología Ambiental.
– Universidad Olmeca: Ingeniería Geológica.
– Universidad de Chihuahua: Ingeniería Geológica.
– Universidad autónoma de Baja California Sur: Geología.
– Universidad de Guanajuato: Ingeniería Geológica.
– Universidad Autónoma de Guerrero: Licenciatura en Geología.
Si alguno de mis lectores habituales ha pasado por las aulas de alguna de ellas, lo invito a compartir su experiencia en los comentarios.

Otra vez la Orquesta Sinfónica de Minería de México.

Las Mañanitas, canción tradicional mexicana, en versión de la Orquesta Sinfónica de Minería. José Areán, director. Verano 2007

 

El Volcán Paricutín y su historia. Parte 2.

Este post es la segunda parte del que comencé el lunes pasado, de modo que deberían ir a leerlo antes de adentrarse en el texto de hoy.

Las preguntas que contesté en el post anterior son:

¿Dónde queda el volcán Paricutín?

¿A qué se debe su nombre?

¿Qué dice la Geología respecto al surgimiento de este volcán?

¿Qué tipo de volcán es?

¿Por qué es tan interesante la historia del Paricutín?

Y a partir de aquí comenzamos la segunda parte del post:

¿Cuándo y cómo se registró la primera erupción?

El Paricutín puede considerarse no solamente el más nuevo de los volcanes del mundo, sino también el único que tiene fecha de nacimiento precisa. Esa fecha es 20 de febrero de 1943.

Por otra parte, tuvo un rápido crecimiento ya que once meses más tarde, las lavas solidificadas habían creado un cono con una altura de 457 m donde originalmente se extendía un llano sembrado de maíz.

Es muy interesante recurrir a las crónicas de la época y recuperar en ellas el relato de Dionisio Pulido, un indio tarascano que fue quien primero reportó el evento en curso, y al dar la alarma, permitió la evacuación, de tal manera que el volcán no se cobró víctimas humanas, pese a que sepultó bajo sus materiales dos pueblos enteros, que ya habían sido evacuados.

En el texto de Branson et al. (1964) se lee la noticia tal como fue consignada en la declaración de Dionisio, originalmente en el dialecto nativo y luego traducida al castellano:

Aquel sábado estaba yo en el campo con mi mujer Pabla y con nuestro hijo Crescencio, de diez años, que cuidaba de nuestros corderillos, mientras yo araba la tierra para sembrar el grano.

De pronto oí cómo resoplaba el suelo delante de mí y vi salir humo de la tierra y creí que el mundo se había incendiado. El suelo tembló durante diez minutos y parecía como si las aguas bajasen corriendo. Más tarde la tierra silbó y vi humo, y recordé que un ingeniero había hablado de que podría formarse un volcán, ya que habíamos estado sufriendo terremotos durante dieciocho días.

Vale la pena resaltar ese signo temprano que permite predecir la posibilidad de erupciones, que es la ocurrencia previa de movimientos telúricos, resultantes de la movilización subterránea de los magmas que buscan salir a la superficie.

En este caso, los síntomas comenzaron casi tres semanas antes.

¿Qué pasó después con ese volcán?

Imaginen por un momento el contexto de ese fenómeno único en la historia: corría el año 1943, cuando se contaba ya con medios suficientes para fotografiar, filmar, medir, registrar, etc., etc. El lugar fue inmediatamente la meca de los estudiosos de México, y por supuesto del vecino país norteamericano y del resto del mundo.

Por eso es que se cuenta con tanta información, tan detallada como para que se hayan llegado a identificar hasta etapas con nombre propio a lo largo de la historia entera de las erupciones.

Se considera que la actividad del volcán duró alrededor de 9 años y algunos días y horas, y que la lava recorrió unos 10 km desde el nuevo cráter.

Los geólogos que estudiaron los eventos a lo largo de esos nueve años, dividieron la actividad volcánica en tres periodos principales: Quitzocho, Sapichu y Taquí Ahuan.

En el primero, la actividad significó la primera construcción del cono, seguido de recurrentes flujos de lava y la expulsión intermitente de bombas y lápilli. En los primeros cuatro meses el crecimiento en altura del cono llegó a 200 m, y a 365 en los cuatro siguientes.

En ese tiempo se evacuó la población de Parícutin (junio de 1943) antes de que llegaran a sepultarla completamente las cenizas, y el poblado de Santa Ana Zirosto fue reubicado también.

El periodo Sapichu fue de muy corta duración, pero con actividad intensa, incluyendo derrames de lava y expulsión de cenizas y bombas de diferentes dimensiones.

El periodo Taquí Ahuan implicó una reactivación del cono principal que alcanzó los 457 m que hoy ostenta, y fue en él que se desalojó San Juan Parangaricutiro que resistió hasta el 10 de mayo de 1944, cuando sus habitantes caminaron 33 km a lo largo de más de 20 días, hasta el lugar del nuevo emplazamiento del que sería Nuevo San Juan Parangaricutiro.

Este periodo se mantuvo con actividad intermitente hasta 1949, cuando se produjeron algunos años de calma, hasta la reactivación de enero de 1952.

La actividad final registrada fue el 4 de marzo de 1952.

Desde entonces sólo existen activas algunas fumarolas, al menos hasta la fecha.

Como un regalito final, les incluyo un video muy interesante que preparó la BBC al cumplirse 70 años del nacimiento del Paricutín, el 20 de febrero de 2012.

Bibliografía.

Branson, C.; Tarr, W.; Keller, W.1964. Elementos de Geología. Ed. Aguilar  España. 653 pp.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente, porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela.

P.S.: Tanto la imagen que ilustra el post como la figura interna fueron tomadas de Imágenes Google.

Buscá en el blog
Nominado por Deutsche Welle, tercer puesto por votación popular
Archivo