Entradas con la etiqueta ‘Clima’

Los suelos como indicadores climáticos.

Este trabajo debe citarse como:

Sanabria, J.A.; Argüello, G.L.; Dasso, C.2004.”Suelos: indicadores climáticos del Holoceno, en la Plataforma Basculada, Cba, Argentina”. Actas del XIX Congreso Argentino de la Ciencia del Suelo Paraná. Resumen expandido :pág.356. Trabajo completo en C.D.

Congreso de suelos de Paraná resumen y Trabajo Juntos2004res by

¿Qué es la lluvia ácida?

Imagen1lluvia ácida¿Qué se entiende por lluvia ácida?

Es esencialmente una precipitación pluvial, (aunque puede ser también nival o sólida, en caso de tratarse de granizo, y hasta generarse como sublimados en ausencia de verdaderas precipitaciones) cuyo pH es inferior a 5,6. Les recuerdo que precisamente es el agua pura la que se usa como referencia del valor neutro de pH que corresponde a 7. Por arriba de ese punto, las sustancias son básicas, y por debajo, son ácidas.

Ciertamente, conviene agregar que el agua de lluvia nunca es químicamente pura, según explicaré más abajo, de suerte que su pH normalmente ronda valores en un  intervalo entre 6 y 5,6.

¿Cómo se produce la lluvia ácida?

De manera muy esquemática pueden verlo en la foto, que seleccioné entre las muchísimas posibles que me ofrecía Internet, porque fue la única en la que encontré las fuentes naturales (los volcanes, por ejemplo), además de las artificiales, como responsables de emisiones que acidifican el agua de lluvia.

Algo digno de celebrarse, sin duda, porque siempre se ve un sesgo muy pronunciado y antropocéntrico en la información ambiental. Por eso me gustó, y aprovecho para repetir una vez más: no somos los únicos contaminadores, ni los más poderosos, aunque eso nos duela en el amor propio, que pretende hacernos el centro absoluto de cuanto ocurre en el planeta. Mal que nos pese, no lo somos, afortunadamente.

La lluvia ácida resulta de la combinación química entre la humedad contenida en el aire y los óxidos de nitrógeno, azufre, y hasta carbono, que en estado gaseoso forman parte de la composición atmosférica en un  momento y lugar dados.

Esa interacción entre los mencionados óxidos y los oxidrilos presentes en la humedad atmosférica y/o el agua de lluvia. genera los siguientes ácidos: nítrico, sulfuroso, sulfúrico y más habitualmente carbónico. Cuando esos compuestos químicos caen a la tierra debido a las precipitaciones, se habla, en términos generales, de lluvia ácida.

¿Desde cuándo se conoce este fenómeno?

La primera descripción científica de este fenómeno data de 1965, y por su novedad llegó a suponerse que era totalmente causada por la actividad humana. Luego de algunos años de debates y profusión de investigaciones, pudo establecerse que existe un alto componente natural en el fenómeno, no obstante lo cual, es cierto que se ha visto incrementado desde los inicios de la era industrial

¿Cuáles son las reacciones químicas que producen lluvias ácidas?

Comenzaremos por analizar las reacciones y transformaciones químicas a partir del azufre (S), nitrógeno (N) y carbono (C) que se encuentran en la atmósfera, e inicialmente se combinan con el oxígeno, que es uno de los dos componentes principales del aire. La procedencia del S, N y C será motivo de la siguiente pregunta y su correspondiente respuesta.

Cuando hay azufre presente en el aire, éste se oxida a dióxido de azufre.

S + O2 = SO2

Puede ocurrir también que el dióxido de azufre llegue a la atmósfera directamente como tal.

El dióxido de azufre se oxida desde su fase gaseosa por reacción con el radical hidroxilo, generando trióxido de azufre que  se convierte rápidamente en ácido sulfúrico (H2SO4) al reunirse con el agua, todo según las siguientes reacciones:

SO2 + OH= HOSO2

HOSO2 + O2 = HO2 + SO 3

SO3 + H2O = H2SO4

El  óxido nitroso (NO) se forma por reacción entre el oxígeno y el nitrógeno, que son precisamente los dos componentes principales y naturales de la atmósféra, cuando hay elevadas temperaturas.

O2 + N2 = 2NO

Hay luego más oxidación, y posteriormente el óxido nítrico combinado con agua, genera ácido nítrico (HNO3), que por ser soluble, reinicia el ciclo, todo según las siguientes reacciones:

O2 + 2NO = 2NO2

3NO2 + H2O = 2HNO3 + NO

El carbono, que se libera en el aire como dióxido de carbono (CO2), se combina con el agua, generando ácido carbónico:

CO2 + H2O = CO3 H2

¿De dónde proceden los elementos químicos que causan la lluvia ácida?

Muchos de ellos son componentes absolutamente naturales, como es el caso del CO2 que es resultado de la respiración de los seres vivos, y su emisión crece con el aumento de la población.

También los compuestos de S y N pueden generarse sin que el hombre tenga injerencia alguna, directamente de los fenómenos volcánicos y postvolcánicos.

Todos esos compuestos, producidos naturalmente pueden recorrer grandes distancias desde el sitio de producción, a favor de los vientos, hasta alcanzar lugares a cientos o miles de kilómetros donde se precipitan como rocío, lluvia, llovizna, granizo, nieve, niebla o neblina.

Según el grado de concentración de los elementos acidificantes, el pH puede descender tanto como para alcanzar un valor de 3.

Otros generadores de compuestos acidificantes son las emisiones de residuos de combustión de hidrocarburos usados como fuente de energía, o contaminantes procedentes de fábricas, y vehículos de combustión.

Los incendios forestales y quemas de pastizales liberan también óxidos de nitrógeno, aun en zonas alejadas de la industrialización, y pueden ser naturales o provocados por el hombre.

 ¿Qué efectos tiene la lluvia ácida?

Sobre los suelos, el efecto depende en gran medida de la condición preexistente del material original. Si la precipitación ocurre sobre terrenos graníticos o del grupo de los granitoides, la acidez de la lluvia acentúa la del terreno original; mientras que en rocas basálticas hay algún grado de compensación entre acidez y basicidad.

En general la acidificación del agua en lagos, ríos y mares dificulta el desarrollo de vida acuática y afecta también a la vegetación y a toda la cadena alimentaria.

Existe además un efecto corrosivo, afectando paisajes carbonáticos y  monumentos y edificaciones construidas con mármol o caliza.

Por otra parte, el enriquecimiento de H+ en los suelos cambia su capacidad de intercambio catiónico, con lo cual afecta el balance de los nutrientes esenciales y su disponibilidad para las plantas.

¿Hay estrategias aplicables para su control?

Sí las hay, pero en muchos casos implican costos adicionales, como por ejemplo la instalación de catalizadores que disocian el óxido antes de emitirlo a la atmósfera, y la reducción al máximo del contenido de azufre en los combustibles.
Por supuesto el control de las emisiones fabriles y la ampliación del sistema de transporte eléctrico también aportan a disminuir la acidificación de la lluvia.

Otra estrategia posible es no agregar tantas sustancias químicas que pueden ser potenciales contaminantes, en los terrenos cultivados.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente porque esta página está registrada con IBSN 04-10-1952-01.
Un abrazo y hasta el miércoles. Graciela.
P.S.: La imagen que ilustra el post es de este sitio.

XIX INQUA Congress

XIX INQUA Congress
Quaternary Perspectives on Climate Change, Natural Hazards and Civilization
27 July – 2 August, 2015, in Nagoya, Japan

 

Once every four years, Quaternary researchers from all over the world meet at the INQUA Congress to exchange the latest research results and develop agendas for the years to come. In 2015, the Congress will take place in Nagoya, Japan.

INQUA

Since 1928, INQUA, the International Union for Quaternary Research, has promoted communication and international collaboration in Quaternary research. The current scientific scope of INQUA is reflected by its five Commissions:
– Coastal and Marine Processes
– Palaeoclimate
– Humans and Biosphere
– Stratigraphy and Chronology
– Terrestrial Processes, Deposits and History

For more information, visit the site http://inqua2015.jp/

 

Exoclimes III — The Diversity of Planetary Atmospheres

Exoclimes III — The Diversity of Planetary Atmospheres

Dates     09 Feb 2014 – 14 Feb 2014

Location    Davos, Switzerland
Topics     Exoplanets, Brown Dwarfs, Planetary Science, Atmospheric Science, Climate, Earth
For more information, go to:      http://www.exoclimes.org/

¿Es lo mismo una tormenta eléctrica que una tormenta magnética?

rayos2He notado que con motivo de los luctuosos sucesos acaecidos en la playa de Villa Gesel, muchos lectores han entrado al blog a través de la búsqueda “tormenta magnética”, lo cual me induce a pensar que diferenciar entre ambos fenómenos no sería ocioso.

Casi todo lo que quieran saber acerca de las tormentas magnéticas ya lo he detallado antes en otro post, que les recomiendo leer también; pero hoy quiero resaltar en qué residen las diferencias entre esos eventos y las tormentas eléctricas.

¿Qué disciplina estudia las tormentas magnéticas y por qué?

En general es parte del conocimiento de astrónomos y astrofísicos, ya que se trata de eventos que se originan en el Sol, y no en nuestro propio planeta.

¿Qué disciplinas estudian las tormentas eléctricas y por qué?

Las tormentas eléctricas son abordadas tanto desde la Climatología, porque las tormentas son parte de los elementos constituyentes del sistema climático; como desde la Meteorología, porque caracterizan el estado del tiempo en un momento dado.

En cualquier caso, esto está señalando que se trata de fenómenos generados dentro de la propia atmósfera del planeta Tierra.

En el marco de la Meteorología, existe además una especialidad que estudia todo lo relacionado específicamente con los rayos, que se denomina Ceraunología.

¿Qué grandes diferencias puede notar una persona no versada en ninguna de ambas ciencias?

Pues es muy sencillo: en una tormenta eléctrica, habría que ser muy nabo para no darse cuenta de que está teniendo lugar.

No es así en cambio con las tormentas magnéticas, cuyos efectos pasan desapercibidos a la población, afectando en cambio a numerosos aparatos e intrumental electrónico, eléctrico y electromagnético en general

¿Cuáles son las manifestaciones de las tormentas eléctricas?

Casi todos las podemos enumerar sin problemas: el rayo (del cual hay varios tipos),  el relámpago, el trueno (ambos estrechamente vinculados con los rayos) y las centellas. Sobre estas últimas suele discutirse si son o no un fenómeno que de verdad puede separarse de los rayos, o si simplemente se trata de un caso particular de ellos.

¿Qué es el rayo, específicamente?

El rayo es una poderosa descarga electrostática natural que genera también  emisión de luz  (relámpagos) y estruendos acompañantes (truenos).

La explicación misma y detallada de la producción de la descarga ha causado serias divisiones entre los científicos que se decantan por una u otra de diversas hipótesis, que exceden nuestras líneas, pero que en términos muy generalizados intento sintetizar más abajo, rescatando exclusivamente los puntos que casi todas ellas comparten.

Básicamente se trata de una gran descarga eléctrica que responde a su vez a una diferencia de potencial generada entre dos nubes, o entre las nubes y la tierra. Obviamente al existir una diferencia de estado energético entre dos porciones del medio, las partículas cargadas tienden a moverse desde las zonas de alto potencial a las de bajo.

Así nace la corriente de descarga, es decir el rayo, que en definitiva no es otra cosa  que eso.

Ahora bien, cómo se produce la diferencia de potencial  (que puede llegar a valores de millones de voltios) es el tema siempre en discusión y para el cual existen numerosas hipótesis.

¿Cómo se relaciona con el trueno?

El trueno es el resultado sonoro del rayo, que surge porque ante el paso de la corriente eléctrica, las moléculas de aire se ionizan, y se desarrollan ondas de choque.

Antes de dejar este tema, les recuerdo que a veces los rayos pueden producirse en las nubes de cenizas de erupciones volcánicas, como ya expliqué en otro post.

¿Hay precauciones especiales que pueden tomarse en las tormentas eléctricas?

Sí, por supuesto, y esencialmente residen en tratar de hallar refugio en construcciones cerradas. Aun dentro de ellas, es mejor abstenerse de utilizar aparatos conectados a la red eléctrica, como por ejemplo el teléfono, salvo que sea inalámbrico.

Cuando uno está en espacios abiertos (como nos pasa muchas veces a los geólogos), pero con el vehículo cerca, lo mejor que puede hacerse es entrar en él y cerrar todas las ventanillas, porque el auto se constituye en ese caso en una “jaula de Faraday” que conduce la electricidad por la superficie, protegiendo el interior.

Si nada de eso es posible, y uno está a campo abierto, debe tenderse en el suelo, porque la energía busca el camino más corto, y toda superficie alta o elevada es una vía preferente para la descarga. Inclusive es mejor tirarse en el fondo de una zanja o barranco, y es bueno alejarse de los elementos metálicos, como la piqueta que uno siempre carga, por ejemplo.

Si este post les ha gustado como para llevarlo a su blog, o a la red social, por favor, mencionen la fuente, porque esta página está registrada con IBSN 04-10-1952-01.

Un abrazo y hasta el miércoles. Graciela.

P.S.: La imagen que ilustra el post la he tomado de este sitio.

Buscá en el blog
Nominado por Deutsche Welle, tercer puesto por votación popular
Archivo